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We give a functional Korovkin-type theorem on B(X ), the space of bounded
complex-valued functions on an arbitrary set X and investigate a BKW-operator on
B(X ) for a finite collection of test functions with a suitable property and a semi-
norm defined by a finite subset of X. � 1996 Academic Press, Inc.

1. Introduction and Results

The first author [6] and G. Anastassiou [2,3] independently proved the
following discrete Korovkin theorem.

Theorem A. Let Y be a countable set, B(Y ) the space of real-valued
bounded functions on Y with the usual supremum norm & &� , y0 # Y and
[g1 , ..., gk] a finite subset of B(Y ) which has the property that there are real
constants ;1 , ..., ;k such that �k

i=1 ;i (gi ( y)&gi ( y0))�1 for all y{y0 .
If [Tn] is a sequence of positive linear operators on B(Y ) such that
Tn(1)=1 for all n�1 and limn � �(Tngi)( y0)=gi ( y0) for i=1, ..., k, then
limn � �(Tn f )( y0)=f ( y0) for all f # B(Y ), where 1 is the identity of B(Y ).

We first give a simple proof of the above theorem by considering the
Stone-Cech compactification of Y endowed with the discrete topology.

Throughout all sections except for the last section, let X be a set and
B(X ) the Banach space of bounded complex-valued functions on X with
the supremum norm. Let E=[x1 , ..., xm]/X, f0=1, the identity of B(X ),
and let [ f1 , ..., fk] be a finite collection of functions in B(X ) which satisfies
the following two conditions:
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(i) There are complex constants ;1 , ..., ;k such that

Re :
k

i=1

;i { fi (x)&
1
m

:
m

#=1

fi (x#)={�1,
�0,

if x # X"E
if x # E ;

and

(ii) rank \
1

f1(x1)
b

fk(x1)

} } }
} } }
} } }
} } }

1
f1(xm)

b

fk(xm)+=m.

Then we next prove the following Korovkin-type approximation theorem.
This is a generalization of Theorem A and should be compared with
Theorem 2.2.2 in the book by F. Altomare and M. Campiti [1], which is
the analogon for positive approximation.

Theorem 1. Let (+, ') be a pair of continuous linear functionals on B(X )
such that '(1)=&+&, '( f )=�m

#=1 :# f (x#) (\f # B(X )), where :# # R
(#=1, ..., m). If [+*] is a net of linear functionals on B(X ) such that
sup* &+* &�&+& and lim* +*( fi)='( fi) for i=0, 1, ..., k, then lim* +*( f )=
'( f ) for all f # B(X ).

Remark. In view of the above theorem, the following question occurs:
If + is a continuous linear functional on B(X ) and if [T*] is a net of linear
contractions on B(X ) such that lim* +(T* fi) exists for i=0, 1, ..., k, then
does lim* +(T* f ) exist for all f # B(X )? As observed in 4.2 of the last
section, we negatively answer this question even if + is an evaluation at a
point in X.

Following [7, 8], we recall the definition of BKW-operators. A bounded
linear operator T on B(X ) is said to be BKW for test functions
[ f0 , f1 , ..., fk] and the seminorm & &E if [T*] is a net of bounded linear
operators on B(X ) such that lim* &T* &=&T& and lim* &T*( fi)&T( fi)&E

=0 for i=0, 1, ..., k, then lim* &T*( f )&T( f )&E=0 for all f # B(X ),
where & f &E=supx # E | f (x)| ( f # B(X )). We note that the condition
``lim* &T* &=&T&'' can be replaced by the condition ``sup* &T* &�&T&'' in
the above definition (cf. [8, Lemma 1.1]). A linear operator T on B(X ) will
be called locally unital (on E) if (T1)(x)=1 for every x # E, and a contrac-
tion if &T&�1. In particular, T is simply called unital if (T1)(x)=1 for all
x # X. We will notice that

``T is a unital contraction'' � ``T is positive and unital''

for any linear operator T on B(X ). The above theorem implies the follow-
ing result which gives an information on locally unital linear contractions
on B(X ) that are BKW for [ f0 , f1 , ..., fk] and & &E .
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Theorem 2. Let T be a locally unital linear contraction on B(X ) such
that

(I) (Tf )(x)= :
m

#=1

f (x#) g#(x) (\x # E, \f # B(X ))

for some g1 , ..., gm # B(X ). Then T is BKW for [ f0 , f1 , ..., fk] and & &E .

The preceding theorem implies that the average of certain homo-
morphisms from B(X ) into itself is BKW for [ f0 , f1 , ..., fk] and & &E as
observed in the following result.

Corollary 3. Let [,1 , ..., ,N] be a finite set consisting of maps from X
into itself such that ,i (E)/E (i=1, ..., N). For each i, let Ti be the composi-
tion operator on B(X ) defined by ,i . Then the operator (T1+ } } } +TN)�N
is a unital BKW-contraction on B(X ) for [ f0 , f1 , ..., fk] and & &E .

Let ;X be the Stone-Cech compactification of X endowed with the dis-
crete topology so that we can regard B(X ) as the Banach space C(;X ) of
all continuous functions on ;X. Let T be a locally unital linear contraction
on B(X ) and T* its adjoint operator. Then for each x # E, T*($x) is a
probability Radon measure on ;X, where $x denotes the Dirac measure
concentrated at x. Note that the condition (I) in Theorem 2 is equivalent
to the following condition:

(I$) supp(T*$x)/E for every x # E.

Here ``supp'' denotes the support of a measure on ;X. We further consider
the conditions:

(II) There exists a point xT in E such that (T*$xT)(;X"X )>0.

(III) There exists a point xT in E and a point y in X"E such that
(T*$xT)([ y])>0 and infy{x # X max1�i�k | fi (x)&fi ( y)|=0.

Note that if T satisfies the condition (I) then, since (T*$x)(;X"E)=0 for
every x # E by (I$), T satisfies neither of the conditions (II) and (III). The
following result asserts that any locally unital linear contraction on B(X )
which satisfies (II) or (III) is not BKW for [ f0 , f1 , ..., fk] and & &E .

Theorem 4. Let T be a locally unital linear contraction on B(X ) which
satisfies (II ) or (III ). Then there exists a sequence [Tn] of unital linear con-
tractions on B(X ) such that limn � � &Tn( fi)&T( fi)&E=0 for every
i=0, 1, ..., k but limn � �(Tn f )(xT) fails to exist for some f # B(X ).

Remark. In case of X=N, the natural numbers, B(X ) is the space l �

of all bounded sequence of complex numbers, and the unilateral backward
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shift operator T on l � satisfies the condition (III), whenever each fi is con-
stant on N"E. On the other hand, if T is a linear operator on l � such that

(T[an])n=bn( Lim
n � �

an) (n # N, [an] # l �),

where Limn � � denotes a Banach limit and [bn] is an element of l � with
bn=1 (\n # E) and |bn |�1 (\n # N), then it is a locally unital contraction
and satisfies the condition (II).

The following result asserts that all locally unital linear contractions on
B(X ) that are BKW for [ f0 , f1 , ..., fk] and & &E have the form (I) on E
when no fi is ``notched''.

Theorem 5. Assume that f1 , ..., fk satisfy the following condition:

(iii) \y # X"E, _[ y1 , y2 , ...]/X } yn{y (n=1, 2, ...),

lim
n � �

fi ( yn)=fi ( y) (1�i�k).

Then a locally unital linear contraction T on B(X ) is BKW for [ f0 , f1 , ..., fk]
and & &E if and only if it has the form (I ) on E.

2. A Simple Proof of Theorem A

Let [Tn] be a sequence of positive linear operators on B(Y )$C(;Y )
such that Tn(1)=1 for all n�1 and y0 # Y. For each n, we consider a
probability Radon measure +n on ;Y defined by +n( f )=(Tn f )( y0) for
every f # C(;Y ). Since

:
k

i=1

;i[gi ( y)&gi ( y0)]�1 ( y{y0)

for the real constants ;1 , ..., ;k by hypothesis, the function h=
�k

i=1 ;i[gi&gi ( y0)1] satisfies h(|)�1 for every | # ;Y with |{y0 .
Suppose that limn � � +n(gi)=gi ( y0) for i=1, ..., k. It follows that
limn � � +n(h)=0. For f # B(Y ) we have | f (|)&f ( y0)|�2 & f &� h(|) for
all | # ;Y. Then

|+n( f )&f ( y0)|=|+n( f&f ( y0) 1)|�2 & f &� +n(h) � 0 (as n � �),

and this finishes the proof. Q.E.D

Remark. Comparing the above proof with Theorem 1 in Nishishiraho
[5] may be interesting.
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3. Proof of Results

We recall that E=[x1 , ..., xm]/X and [ f1 , ..., fk]/B(X ) satisfy the
conditions (i) and (ii), by hypothesis. Throughout this section, let h be the
function in B(X ) defined by

h(x)=Re :
k

i=1

;i { fi (x)&
1
m

:
m

#=1

fi (x#)=
for every x # X. Note that h | E=0. In fact,

:
m

`=1

h(x`)=Re :
k

i=1

:
m

`=1

;i { fi (x`)&
1
m

:
m

#=1

fi (x#)=
=Re :

k

i=1

;i { :
m

`=1

fi (x`)&
m
m

:
m

#=1

fi (x#)=
=0,

so that h(x`)=0 for `=1, ..., m, since h | E�0 by the condition (i).

3.1. Proof of Theorem 1. Let (+, ') be a pair of continuous linear func-
tionals on B(X ) such that '(1)=&+&, '( f )=�m

#=1 :# f (x#) (\f # B(X )),
where :# # R (#=1, ..., m). Suppose [+*] is a net of linear functionals on
B(X ) such that sup* &+*&�&+& and lim* +*( fi)='( fi) for i=0, 1, ..., k
and let f # B(X ) be any function. Then we have to show that
lim* +*( f )='( f ). To do this let [+*$( f )] be any subnet of [+*( f )]. Since
&+*$&�&+& for all *$, there exists a weak*-convergent subnet [+*"] of
[+*$]. Let +~ be the weak*-limit of [+*"], so that &+~ &�&+&. Also since
+~ (1)=lim*" +*"(1)='(1)=&+&, it follows that +~ is positive. Note that

+~ ( fi)=lim
*"

+*"( fi)='( fi)

for i=0, 1, ..., k. Then we have

+~ (h)=Re +~ \ :
k

i=1

;i { fi&
1
m

:
m

#=1

fi (x#)=+
=Re ' \ :

k

i=1

;i { fi&
1
m

:
m

#=1

fi (x#)=+
='(h)= :

m

`=1

:`h(x`)

=0 (since h=0 on E=[x1 , ..., xm]).
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Now by the condition (ii), we can find complex constantsc0 , c1 , ..., ck such that

f (x)= :
k

i=0

ci fi (x)

for every x # E. Set g=f&�k
i=0 ci fi . Since g | E=0 and h(x)�1 for every

x # X"E by condition (i), it follows that

|+~ (g)|�+~ ( | g| )�+~ (&g& h)=&g& +~ (h)=0;

hence we have

lim
*"

+*"( f )=+~ ( f )= :
k

i=0

ci +~ ( fi)= :
k

i=0

ci'( fi)

=' \ :
k

i=0

ci fi+='\ g+ :
k

i=0

ci fi+='( f ).

In other words, lim* +*( f )='( f ). Q.E.D

3.2. Proof of Theorem 2. Let T be a locally unital linear contraction on
B(X ) which has the form (I) on E, i.e.,

(Tf )(x)= :
m

#=1

f (x#) g#(x) (\x # E, \f # B(X ))

for some g1 , ..., gm # B(X ). Here we note that if x # E then g#(x)=
(T*$x)([x#])�0 for every x# # E=[x1 , ..., xm] and �m

#=1 g#(x)=1,
because T*($x) is probability Radon measure on ;X which follows from
the fact that (T1)(x)=1. Suppose [T*] is a net of linear contractions on
B(X ) such that lim* &T*( fi)&T( fi)&E=0 for i=0, 1, ..., k. Let f # B(X ) and
x` # E be fixed arbitrarily. Consider the functional ' on B(X ) defined by

'(g)=(Tg)(x`) \= :
m

#=1

g(x#) g#(x`)+
for every g # B(X ). Then we have '(1)=�m

#=1 g#(x`)=(T1)(x`)=1. Let +
be the evaluation at x` and so '(1)=1=&+&. Moreover,

lim
*

+(T* fi)=lim
*

(T* fi)(x`)=(Tfi)(x`)='( fi)

for i=0, 1, ..., k. Therefore, by Theorem 1, we have

lim
*

(T* f )(x`)='( f )= :
m

#=1

f (x#) g#(x`)=(Tf )(x`).
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Since E is a finite set, it follows that lim* &T*( f )&T( f )&E=0. In other
words, T is BKW for [ f0 , f1 , ..., fk] and & &E . Q.E.D

3.3. Proof of Corollary 3. Let [,1 , ..., ,N] be a finite set consisting of
maps from X into itself such that ,i (E)/E (i=1, ..., N). For each i, let Ti

be the composition operator on B(X ) defined by ,i and set T=
(T1+ } } } +TN)�N. Then it is obvious that T is a unital linear contraction
on B(X ). For each x # X and 1�#�m, let

g#(x)=
*[1�i�N : .i (x)=x#]

N
.

Then each g# is a function in B(X ) and we can easily see that

(Tf )(x)= :
m

#=1

f (x#) g#(x)

for every x # E and f # B(X ). Hence the corollary follows from Theorem 2.
Q.E.D

3.4. Proof of Theorem 4. Case (a). Let T be a locally unital linear
contraction on B(X ) satisfying the condition (II). Since ;X is totally dis-
connected, it is zero dimensional (i.e., the clopen sets form a base for ;X )
(cf. [4, Theorem 3.5]). Then for each n�1, we can find a finite collection
2n=[Y n

1 , ..., Y n
:(n)] of pairwise disjoint non-empty clopen sets in ;X such

that

;X=Y n
1 _ } } } _ Y n

:(n) and | fi (x)&fi ( y)|<
1
n

(0�i�k)

for all x, y # Yn
j , j=1, ..., :(n). Here, if necessary, taking a common refine-

ment of 2n and 2n+1 , we may assume without loss of generality that 2n+1

is a refiment of 2n for each n. Note that each Y n
j & X is a non-empty set,

hence choose a point yn
j in Yn

j & X and set Bn=[ yn
1 , ..., yn

:(n)]. Since each
Yn

j is clopen in ;X and X is dense in ;X, it follows that if Y n
j & (;X"X )

is a non-empty set, then Y n
j & X is an infinite set. Therefore we can choose

again these points yn
j so that if m<n and Y n

j & (;X"X ){<, then yn
j � Bm .

We consider the sequence [Tn] of linear operators on B(X ) defined by

(Tn f )(x)={
f (x), if x # X"E

:
:(n)

j=1

f ( yn
j )(T*$x)(Y n

j ), if x # E
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for every f # B(X ) and n�1. Since T is locally unital (on E) by hypothesis,
it follows that each Tn is unital and positive. Moreover,

|(Tn fi)(x)&(Tfi)(x)|� :
:(n)

j=1
|

Y j
n

| fi ( yn
j )&fi (|)| d(T*$x)(|)

� :
:(n)

j=1

1
n

(T*$x)(Y n
j )=

1
n

for each n�1, x # E and 0�i�k. After taking the limit with respect to n,
we see that limn � �(Tn fi)(x)=(Tfi)(x) for each x # E and 0�i�k, and
hence the finiteness of E implies that

lim
n � �

&Tn( fi)&T( fi)&E=0

for i=0, 1, ..., k. Now let for each n�1

Wn=. [Y n
j : Y n

j & (;X"X ){<]

and

An=[ yn
j # Bn : Y n

j & (;X"X ){<].

Since 2n+1 is a refinement of 2n for each n�1, it follows that

W1#W2# } } } #;X"X,

and by setting W=��
n=1 Wn we have

(T*$xT)(W )= lim
n � �

(T*$xT)(Wn)�(T*$xT)(;X"X )>0

from the condition (II). Thus we can choose an integer N so that

(T*$xT)(Wn)< 4
3 (T*$xT)(W )

for all n�N. Next, note that An {< (n=1, 2, . . .) and An & Bm=< when
m<n. Thus A1 , A2 , . . . are pairwise disjoint non-empty sets in X and hence
we can consider the function f in B(X ) defined by

f (x)={
(&1)n, if x # An for some n�N

0, if x # X> .
�

n=N

An .
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Recall that xT # E, and thus by the definition of Tn we get for all n�N

(Tn f )(xT)= :
yj

n # An

(&1)n (T*$xT)(Y n
j )+ :

yj
n # AN _ } } } _ An&1

f ( yn
j )(T*$xT)(Y n

j ).

But since

:
yj

n # An

(T*$xT)(Y n
j )=(T*$xT)(Wn)�(T*$xT)(W )

and

:
yj

n # AN _ } } } _ An&1

(T*$xT)(Y n
j )�(T*$xT)(WN"Wn)< 1

3 (T*$xT)(W ),

it follows that

(Tn f )(x) {�2
3 (T*$xT)(W ), if n is even

�&2
3 (T*$xT)(W ), if n is odd,

which proves that limn � �(Tn f )(xT) does not exist because
(T*$xT)(W)>0.

Case (b). Let T be a locally unital linear contraction on B(X ) satisfy-
ing the condition (III). Then for each n�1, we can choose a point yn

in X such that yn {y and max1�i�k | fi ( yn)&fi ( y)|<1�n. Suppose first
that [ y1 , y2 , ..., ] is an infinite set. We may assume that y1 , y2 , . . . are
mutually different. For each n�1 and f # B(X ), we set

(Tn f )(x)={
f (x), if x # X"E

|
;X"[ y]

f d(T*$x)+f ( yn)(T*$x)([ y]), if x # E,

so that [Tn] is a sequence of unital linear contractions on B(X ) such that

lim
n � �

&Tn( fi)&T( fi)&E=0

for i=0, 1, ..., k. However, for any function f in B(X ) such that
f ( yn)=(&1)n for each n�1, limn � �(Tn f )(xT) does not exist, since

(Tn f )(xT)=|
;X"[ y]

f d(T*$xT)+(&1)n (T*$xT)([ y])

for each n�1 and (T*$xT)([ y])>0 by the condition (III).
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Suppose next that [ y1 , y2 , . . .] is a finite set. Then we can find a point
z in X such that z{y and fi (z)= fi ( y) for i=0, 1, ..., k. For each n�1 and
f # B(X ), we set

f (x), if x # X"E
(Tn f )(x)={ (Tf )(x), if x # E and n is even

�;X"[ y] f d(T*$x)+f (z)(T*$x)([ y]), if x # E and n is odd,

so that [Tn] is a sequence of unital linear contractions on B(X ) such that
(Tn fi)(x)=(Tfi)(x) for every x # E and 0�i�k. However, for any func-
tion f in B(X ) such that f (z){f ( y), limn � �(Tn f )(xT) does not exist, since

|(T2n&1 f )(xT)&(T2n f )(xT)|=| f (z)&f ( y)| (T*$xT)([ y])

for each n�1 and (T*$xT)([ y])>0 by the condition (III). Q.E.D

3.5. Proof of Theorem 5. Assume that f1 , ..., fk satisfy the condition (iii)
and let T be a locally unital linear contraction on B(X ). If T has the form
(I) on E, then it is BKW for [ f0 , f1 , ..., fk] and & &E from Theorem 2. To
show the converse suppose that T does not have the form (I) on E and
hence there exists a point z in E such that supp(T*$z)/3 E. If
(T*$z)(;X"X )>0, then T is not BKW for [ f0 , f1 , ..., fk] and & &E from
Theorem 4. If (T*$z)(;X"X )=0, then there exists a point y in X"E such
that (T*$z)([ y])>0 because T*($z) is a regular measure with
supp(T*$z)/3 E. Then we have infy{x # X max1�i�k | fi (x)&fi ( y)|=0 by
the condition (iii) and hence T is not BKW for [ f0 , f1 , ..., fk] and & &E

from Theorem 4. Q.E.D

4. Examples

4.1. An example of [ f1 , ..., fk] satisfying conditions (i) and (ii). Let
X=C, the complex numbers, and E=[z1 , ..., zm], where m�2 and zi {zj

(i{j). For any finite sequence [:1 , ..., :m&1] of complex numbers, define

fi (z)={zi,
:i ,

if z # E
if z # X"E

(1�i�m&1). (1)

We show that there is a finite sequence [:1 , ..., :m&1] such that the corre-
sponding functions f1 , ..., fm&1 in B(X ) satisfy the conditions (i) and (ii) in
the first section. We note, as is well-known, that without any additional
hypothesis the functions f1 , ..., fm&1 always satisfy the condition (ii). To
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find a sequence [:1 , ..., :m&1] such that the corresponding functions
f1 , ..., fm&1 satisfy the condition (i), let

ai=
1
m

:
m

#=1

fi (z#) (1�i�m&1) (2)

and

f1(z1)&a1 } } } f1(zm&1)&a1

A=\ b b b + . (3)

fm&1(z1)&am&1 } } } fm&1(zm&1)&am&1

By an elementary calculation we observe that rank A=m&1. Thus there
exists a unique solution (d1 , ..., dm&1) in Cm&1 for the equation

f1(zm)&a1 d1

\ b +=A \ b + . (4)

fm&1(zm)&am&1 dm&1

Using this solution (d1 , ..., dm&1), we first prove the following

Lemma. There exists a vector (;1 , ..., ;m&1) in Cm&1, with (;1 , ..., ;m&1)
{(0, ..., 0), such that the function

h(z)=Re :
m&1

i=1

;i ( fi (z)&ai) (z # X ) (5)

satisfies h | E=0.

Proof. Case (a). Suppose there is a number 1�i�m&1 such that
di # R, the real numbers. Then define a vector (;1 , ..., ;m&1) in Cm&1 by
the following relation

(;1 , ..., ;m&1) A=- &1 ei , (6)

where ei is the (row) vector in Cm&1 whose i-th coordinate is 1 and whose
other coordinate are all 0. It follows from (3), (4) and (5) that h | E=0.

Case (b). Suppose m�3 and di � R for all 1�i�m&1. Then in par-
ticular, d1 , d2 � R and we can choose two complex numbers c1 and c2 so
that

(c1 , c2){(0, 0) and Re(c1)=Re(c2)=Re(c1d1+c2d2)=0. (7)

361korovkin theorem and bkw-operators



File: 640J 290612 . By:CV . Date:30:01:00 . Time:10:52 LOP8M. V8.0. Page 01:01
Codes: 3188 Signs: 2108 . Length: 45 pic 0 pts, 190 mm

Define a vector (;1 , ..., ;m&1) in Cm&1 by the relation

(;1 , ..., ;m&1) A=(c1 , c2 , 0, ..., 0). (8)

It follows that (;1 , ..., ;m&1){(0, ..., 0) and h | E=0.

Case (c). Suppose m=2. It follows from (1) and (2) that
f1(z1)&a1 {0 and �2

i=1 ( f1(zi)&a1)=0. Hence d1=&1 is a unique solu-
tion of the equation (4), and so this is a part of Case (a). Q.E.D

By the lemma, we write

:i=;� i+
1
m

:
m

#=1

fi (z#) (1�i�m&1), (9)

where ;� i denotes the complex conjugate of ;i (and we may assume without
loss of generality that �m&1

i=1 |;i |
2�1). Then the corresponding functions

f1 , ..., fm&1 for [:1 , ..., :m&1] satisfy the conditions (i) and (ii) as required.
We can give a shorter and easier proof in case of k�m.

4.2. An example of a sequence [Tn] of unital contractions for which
limn � �(Tn fi)(x) exists for all 1�i�k but such that limn � �(Tn f )(x) fails
to exists for some f in B(X ). Let X, E=[z1 , ..., zm] and [ f1 , ..., fm&1] be
as in 4.1 and define

(Tn f )(z)=f (z+n) (10)

for each n�1 and f # B(X ). Then [Tn] is a sequence of unital linear con-
tractions on B(X ). Let + be the evaluation at the origin of X. Then
+(Tn1)=1 for all n�1 and limn � � +(Tn fi)=:i for all 1�i�k. However,
limn � � +(Tn f ) fails to exist for any function f in B(X ) such that
f (n)=(&1)n for all natural numbers n.

4.3. An example of X and E=[x1 , ..., xm] such that all locally unital
linear contractions on B(X ) are BKW for [1, f1 , ..., fk] and & &E when-
ever [ f1 , ..., fk] satisfies conditions (i) and (ii). Let X=[x1 , ..., xm+1],
E=[x1 , ..., xm], f0=1 and let [ f1 , ..., fk] be a finite collection of functions
in B(X ) which satisfies the conditions (i) and (ii) in the first section. Then
an arbitrary locally unital linear contraction T on B(X ) is BKW for
[1, f1 , ..., fm] and & &E . Actually let [T*] be a net of contractions on B(X )
such that lim* &T*( fi)&T( fi)&E=0 for i=0, 1, ..., m. Let y # E and
f # B(X ) be fixed arbitrarily. Then we have only to show that
lim*(T* f )( y)=(Tf )( y). As observed in the proof of Theorem 1, since
T(1)=1 on E and y # E, we can assume that [T**($y)] converges in the
weak * topology to a probability measure on ;X, say '. Since

'( fi)=lim
*

(T* fi)( y)=(Tfi)( y)=(T*$y)( fi) (0�i�k),
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it follows that ' and T*($y) agree on the linear span of [ f0 , f1 , ..., fk],
hence '(h)=(T*$y)(h)=(Th)( y) because ' and T*($y) are positive. By the
condition (ii), there are scalars c0 , c1 , ..., ck such that f (x)=�k

i=0 ci fi (x)
for every x # E. Note that h | E=0 and h(xm+1)�1, hence by setting

c=
1

h(xm+1) { f (xm+1)& :
k

i=0

ci fi (xm+1)= ,

we have f=ch+�k
i=0 ci fi . Therefore

lim
*

(T* f )( y)='( f )=c'(h)+ :
k

i=0

ci'( fi)

=c(Th)( y)+ :
k

i=0

ci (Tfi)( y)=(Tf )( y)

as required.

4.4. An example of X, E=[x1 , ..., xm], and [ f1 , ..., fk] for which the
converses of Theorems 2 and 4 do not hold. Throughout the remaider of
this section, let X be a set containing m+2-points; x1 , ..., xm , xm+1 , xm+2 ,
E=[x1 , ..., xm] and [ f1 , ..., fm] a subset of B(X ) defined by

f1(x)={
1,
0,
3,
2,

if x=x1

if x=x# (2�#�m)
if x=xm+1

otherwise

and

fi (x)={1,
0,

if x=xi

if x{xi
(i=2, ..., m).

Let h be a function in B(X ) defined by

h=\ :
m

i=1

fi+&1, (11)

so that

h | E=0, h(xm+1)=2 and h=1 on X"(E _ [xm+1]). (12)

Accordingly [ f1 , ..., fm] satisfies the conditions (i) and (ii) in the first
section. Moreover we note that

inf
xm+1{x # X

max
1�i�m

| fi (x)&fi (xm+1)|=1. (13)
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4.4.1. Consider the following unital linear contraction T on B(X )
defined by

(Tf )(x)={
f (x), if x{x1

(14)f (x1)+f (xm+1)
2

, if x=x1 .

Then (T*$x1
)(;X"X )=0 and (T*$x1

)([xm+1])= 1
2 , hence T satisfies

neither of the conditions (II) and (III). Moreover we see that T is not
BKW for [1, f1 , ..., fm] and & &E . In fact, set

(T2n f )(x)={
f (x), if x{x1

f (x1)+f (xm+1)+f (xm+2)
3

, if x=x1

and

T2n&1( f )=T( f )

for each f # B(X ) and n�1. Then [Tn] is a sequence of unital linear con-
tractions on B(X ) such that limn � �(Tn f )(x)=(Tf )(x) for all f # B(X )
and x # X"[x1]. Further by (14) we see that

lim
n � �

(Tn fi)(x1)=2$i, 1=(Tfi)(x1) (1�i�m),

where $i, j is Kronecker's delta function. But limn � �(Tn f )(x1) fails to
exists for the following function f in B(X ) defined by

f (x)={1,
0,

if x=x1

if x{x1 .

4.4.2. Let m�2 and define

(Tf )(x)={
f (x), if x{x1

(15)f (x2)+f (xm+1)
2

, if x=x1 .

Then T is a unital linear contraction on B(X ) with supp(T*$x1
)=

[x2 , xm+1], and hence T does not satisfy the condition (I). However T is
BKW for [1, f1 , ..., fm] and & &E . Actually let [T*] be a net of contrac-
tions on B(X ) such that lim* &T*( fi)&T( fi)&E=0 for i=0, 1, ..., m, where
f0=1. Then by Theorem 1, we have

lim
*

(T* f )(x#)=(Tf )(x#)
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for all f # B(X ) and 2�#�m. It only remains to show that

lim
*

(T* f )(x1)=(Tf )(x1)

for all f # B(X ). As in 4.3, we can assume that [T**($x1
)] converges in the

weak* topology to a probability Radon measure on ;X, say '. Then by
(11), (12), and (15),

'(h)=lim
*

:
m

i=1

(T* fi)(x1)&lim
*

(T* 1)(x1)

= :
m

i=1

(Tfi)(x1)&(T1)(x1) (16)

=(Th)(x1)=1.

Also, '( f2)=(Tf2)(x1)= 1
2 and '( fi)=(Tfi)(x1)=0 for each 3�i�m;

hence '([x2])= 1
2 and '([x3 , ..., xm])=0. Further by (12) and (16),

1=|
;X

h d'=2'([xm+1])+'(;X"[x1 , ..., xm , xm+1]). (17)

On the other hand, since x2 , xm+1 � ;X"[x1 , ..., xm , xm+1] and
x2 {xm+1 , we have

'([xm+1])+'(;X"[x1 , ..., xm , xm+1])�1&'([x2])= 1
2 . (18)

Combining (17) and (18), we obtain '([xm+1])=1�2 and so '=
($x2

+$xm+1
)�2. In other words, lim*(T* f )(x1)=(Tf )(x1) for all f # B(X ).
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