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We give a functional Korovkin-type theorem on B(X), the space of bounded
complex-valued functions on an arbitrary set X and investigate a BK W-operator on
B(X) for a finite collection of test functions with a suitable property and a semi-
norm defined by a finite subset of X.  © 1996 Academic Press, Inc.

1. INTRODUCTION AND RESULTS

The first author [6] and G. Anastassiou [2,3] independently proved the
following discrete Korovkin theorem.

THEOREM A. Let Y be a countable set, B(Y) the space of real-valued
bounded functions on Y with the usual supremum norm || | ., yo €Y and
{g1, . g} a finite subset of B(Y) which has the property that there are real
constants B, ..., B such that ¥*_, B(g:(y)—g:(yo))=1 for all y+#y,.
If {T,} is a sequence of positive linear operators on B(Y) such that
T,1)=1 for all n=1 and lim, _, (T,g:)(yvo)=g:(yo) for i=1, .., k, then
lim,,_, (T,f)vo)=f(yo) for all fe B(Y), where 1 is the identity of B(Y).

We first give a simple proof of the above theorem by considering the
Stone-Cech compactification of Y endowed with the discrete topology.

Throughout all sections except for the last section, let X be a set and
B(X) the Banach space of bounded complex-valued functions on X with
the supremum norm. Let E= {x|, .., x,,} =X, f,=1, the identity of B(X),
and let { f1, ... f} be a finite collection of functions in B(X) which satisfies
the following two conditions:
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(1) There are complex constants f5,, ..., f§, such that

Reiﬁ,{f,-(x)—; if,-(xy)}{%’ if xeX\E

i=1 S =0, if xekE;
and
1 1
(i) rank fl(xl) fl(xm) —m.

filx) o fulx)

Then we next prove the following Korovkin-type approximation theorem.
This is a generalization of Theorem A and should be compared with
Theorem 2.2.2 in the book by F. Altomare and M. Campiti [ 1], which is
the analogon for positive approximation.

THEOREM 1. Let (u, 1) be a pair of continuous linear functionals on B(X)
such that n(1)=|ul. 7(f)=XI, 0, f(x,) (UfeB(X)). where o, eR
(y=1,..m). If {u,} is a net of linear functionals on B(X) such that
sup; ;| < Il and lim, w,(f) =n(f) for i=0,1, ..k, then lim, si,(f) =
n(f) for all fe B(X).

Remark. In view of the above theorem, the following question occurs:
If u is a continuous linear functional on B(X) and if {7’} is a net of linear
contractions on B(X) such that lim, u(7T), f;) exists for i=0, 1, ..., k, then
does lim, u(T, f) exist for all fe B(X)? As observed in 4.2 of the last
section, we negatively answer this question even if x4 is an evaluation at a
point in X.

Following [ 7, 8], we recall the definition of BK W-operators. A bounded
linear operator 7 on B(X) is said to be BKW for test functions
{ fos f1s o fi} and the seminorm || | if {T,} is a net of bounded linear
operators on B(X) such that lim, |T,| = |7 and lim, |T,(f;) — T(f)|l &
=0 for i=0,1,..,k, then lim, |T,(f)—T(f)|z=0 for all fe B(X),
where | fllz=sup,.x |f(x)| (feB(X)). We note that the condition
“lim, |T,||=|T]|” can be replaced by the condition “sup, |T,| <|T|” in
the above definition (cf. [ 8, Lemma 1.1]). A linear operator 7 on B(X) will
be called locally unital (on E) if (T1)(x)=1 for every x € E, and a contrac-
tion if | T| < 1. In particular, T is simply called unital if (T1)(x)=1 for all
x € X. We will notice that

“T is a unital contraction” < “T is positive and unital”

for any linear operator T on B(X). The above theorem implies the follow-
ing result which gives an information on locally unital linear contractions
on B(X) that are BKW for {fy, f1, ... fi} and || | .
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THEOREM 2. Let T be a locally unital linear contraction on B(X) such
that

(D (If)(x)= Y f(x,) g(x)  (VxeE, VfeB(X))

Sfor some g, ..., g,, € B(X). Then T is BKW for { fo,f1, . fi} and || | .

The preceding theorem implies that the average of certain homo-
morphisms from B(X) into itself is BKW for {f,,f1, ... [} and || | as
observed in the following result.

COROLLARY 3. Let {¢,, ..., ¢y} be a finite set consisting of maps from X
into itself such that ¢,(E)<= E (i=1, ..., N). For each i, let T, be the composi-
tion operator on B(X) defined by ¢,. Then the operator (T, + --- + Ty)/N
is a unital BKW-contraction on B(X) for { fo, f1» . fi} and | || g

Let X be the Stone-Cech compactification of X endowed with the dis-
crete topology so that we can regard B(X) as the Banach space C(fX) of
all continuous functions on SX. Let T be a locally unital linear contraction
on B(X) and T* its adjoint operator. Then for each xe E, T*(J,) is a
probability Radon measure on X, where J, denotes the Dirac measure
concentrated at x. Note that the condition (I) in Theorem 2 is equivalent
to the following condition:

(I') supp(T*5,) < E for every xeE.

Here “supp” denotes the support of a measure on fX. We further consider
the conditions:

(II) There exists a point x, in E such that (7*5 . )(fX\X)>0.

(IIT) There exists a point x, in E and a point y in X \E such that
(T*0,,)({»})>0and inf, , .y max, o<, [£;(x) =f;(y)] =0.

Note that if T satisfies the condition (I) then, since (7*5,)(SX\E) =0 for
every x € E by (I'), T satisfies neither of the conditlons (IT) and (IIT). The
following result asserts that any locally unital linear contraction on B(X)
which satisfies (IT) or (III) is not BKW for { fo, f1, ... fi} and || | z.

THEOREM 4. Let T be a locally unital linear contraction on B(X) which
satisfies (II) or (IIT). Then there exists a sequence {T,} of unital linear con-
tractions on B(X) such that lim,_ . |T,(f)—T(f)Ilg=0 for every
i=0,1,..,k but lim,_, (T, f)(xy) fails to exist for some fe B(X).

Remark. 1In case of X=N, the natural numbers, B(X) is the space [~
of all bounded sequence of complex numbers, and the unilateral backward
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shift operator T on [* satisfies the condition (III), whenever each f; is con-
stant on N\E. On the other hand, if T is a linear operator on /* such that

(T{an})n:bn( Lim an) (I’ZGN, {an} eloc)a

n— oo

where Lim,, _, ., denotes a Banach limit and {b,} is an element of /* with
b,=1(VneFE) and |b,| <1 (Vn eN), then it is a locally unital contraction
and satisfies the condition (II).

The following result asserts that all locally unital linear contractions on
B(X) that are BKW for {fo,fi,...fx} and || |z have the form (I) on E
when no f; is “notched”.

THEOREM 5. Assume that f,, ..., f;. satisfy the following condition:

YuFY (n=1,2,..),
lim fi(y,)=/fi(y)  (1<i<k).

n— oo

Then a locally unital linear contraction T on B(X) is BKW for { fo, f1s «s [}
and || | g if and only if it has the form (I) on E.

(ili) VYyeX\E,H{y,,ys, j =X

2. A SIMPLE PROOF OF THEOREM A

Let {T,} be a sequence of positive linear operators on B(Y)=x= C(fY)
such that 7,(1)=1 for all n>1 and y, € Y. For each n, we consider a
probability Radon measure u, on Y defined by u,(f)=(T,f)(y,) for
every fe C(fY). Since

k

Y Bilgdy) =gy} =1 (y#¥o)

i=1
for the real constants f,,.., f, by hypothesis, the function h=
Sk Blgi—g:/(yo)1} satisfies h(w)>1 for every wefY with w+#y,.
Suppose that lim,_ . u,(g;)=g:(y,) for i=1,.,k It follows that
lim, , . u,(h)=0. For fe B(Y) we have |f(w)—f(yo)| <2 [ f]..h(w) for
all we pY. Then

L) =f (o)l = f=f(p) DIS2N S () =0 (as n— 0),
and this finishes the proof. QED

Remark. Comparing the above proof with Theorem 1 in Nishishiraho
[5] may be interesting.
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3. PROOF OF RESULTS
We recall that E={x,,..x,} <X and {f}, .. f,} =B(X) satisfy the

conditions (i) and (ii), by hypothesis. Throughout this section, let / be the
function in B(X) defined by

ot o4 £ 1)

for every x € X. Note that 2 | E=0. In fact,

m 1 m
N b
égl (x;)=Re l; (Zl B {fl(xé m g }
=Re ¥ 4| 5 fiw—pn 5 4|

=0,

so that Ai(x,)=0 for {=1, ..., m, since & | E=0 by the condition (i).

3.1. Proof of Theorem 1. Let (u, 1) be a pair of continuous linear func-
tionals on B(X) such that 5(1)=|ul, n(f)=X"_, o, f(x,) (VfeB(X)),
where a, e R (y=1, .., m). Suppose {x,} is a net of linear functionals on
B(X) such that sup; ||, | < |lull and lim; u,(f;)=n(f;) for i=0,1, ..k
and let feB(X) be any function. Then we have to show that
lim, u,(f)=n(f). To do this let {x,(f)} be any subnet of {z,(f)}. Since
I, | < Jlul for all A, there exists a weak*-convergent subnet {u,.} of
{p,}. Let i be the weak*-limit of {x,.}, so that [a| <|u|. Also since
A1) =lim;. u,.(1)=n(1)=|ul, it follows that j is positive. Note that

ACf) =lim p;-(f)) =n(f)

for i=0, 1, ..., k. Then we have

=
=
Il [l
~ =~
(¢} (¢}
< =
TN TN
I M= TP
= =
>
|
3=
3
>
\><
T
~—_

=0  (since h=0on E={x, .., x,,}).
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Now by the condition (ii), we can find complex constants¢,, ¢y, ..., ¢, such that
k
fx)= ) eifi(x)
i=0
for every xe E. Set g=f—Y*_, ¢;f:. Since g | E=0 and h(x) >1 for every
x e X\E by condition (i), it follows that

gl <allgl)<allgllh)=lgl ah)=0;
hence we have

=77<[]Z( ,f,> <g+i ,f,>=f7(f).

In other words, lim; u,(f)=n(f). Q.E.D

3.2. Proof of Theorem 2. Let T be a locally unital linear contraction on
B(X) which has the form (I) on E, ie.,

(TF)(x)= Y f(x,) g x) (VxeE VfeB(X

for some g, ..,g, €B(X). Here we note that if xeE then g[(x)=
(T*6,)({x,}) =0 for every x,eE={x,..x,} and Y7_, g(x)=1,
because 7*(J,) is probability Radon measure on X which follows from
the fact that (71)(x)=1. Suppose {7} is a net of linear contractions on
B(X) such that lim, ||7,(f;) —T(f)|lg=0fori=0,1, .., k. Let fe B(X) and
X, € E be fixed arbitrarily. Consider the functional # on B(X') defined by

n()(Tgx4<Zg >

y=1

for every g e B(X). Then we have (1) =3""_, g,(x;)=(T1)(x;)=1. Let u
be the evaluation at x, and so #(1)=1= |ul|. Moreover,

lim (T3 f7) = lim (T3 ) (x ) = (Tf:) () = n(f3)

for i=0, 1, ..., k. Therefore, by Theorem 1, we have

lim (75, /) (x) =n(f)= Z Jlx =(TF)(x).
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Since E is a finite set, it follows that lim, | 7,(f) — T(f)||r=0. In other
words, T'is BKW for { /o, f1, -, fi} and || | g Q.ED

3.3. Proof of Corollary 3. Let {¢,,..,¢5} be a finite set consisting of
maps from X into itself such that ¢,(E)< E (i=1, .., N). For each i, let T,
be the composition operator on B(X) defined by ¢, and set T=
(Ty+ --- + Ty)/N. Then it is obvious that 7 is a unital linear contraction
on B(X). For each xe X and 1 <y<m, let

NEELALLLHILE

Then each g, is a function in B(X') and we can easily see that

(If)(x) =} flx,) g,(x)

for every x e E and f'e B(X). Hence the corollary follows from Theorem 2.
Q.E.D

3.4. Proof of Theorem 4. Case (a). Let T be a locally unital linear
contraction on B(X) satisfying the condition (II). Since fX is totally dis-
connected, it is zero dimensional (i.e., the clopen sets form a base for fX)
(cf. [4, Theorem 3.5]). Then for each n>1, we can find a finite collection
4,={Y7, .., Y}, } of pairwise disjoint non-empty clopen sets in X such
that

BX=YIU LY

a(n)

1
and  |fi(x)—fi»)I < (0<i<h)

for all x, ye Y7, j=1, .., a(n). Here, if necessary, taking a common refine-
ment of 4, and 4, , ;, we may assume without loss of generality that 4, , ,
isa reﬁment of 4, for each n. Note that each Y7 n X is a non-empty set,
hence choose a point y} in Y} N X and set B, = { Vs s Vi ) - Since each
Y? is clopen in X and X is dense in BX, it follows that if Y7 n (X \X)
is a non-empty set, then Y7 n X is an infinite set. Therefore we can choose
again these points y7 so that if m<nand Y n(BX\X)# J, then y! ¢ B,,.
We consider the sequence {7} of linear operdtors on B(X) defined by

S(x), it xeX\E

(T, f)(x)= ai)f(yj’»')(T*éx)(Yf)ﬂ if xeFE

Jj=1
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for every f'e B(X

) and n> 1. Since T is locally unital (on E) by hypothesis
it follows that each T, is unital and positive. Moreover

a(n)
(T, fi)(x) — Z J Jilw)| d(T*6,)(w)

on) 1
< —(T*0 )(Y")=-
X LT =

for each n>1, xe E and 0 <i<k. After taking the limit with respect to n
we see that lim,_, (7, f;)(x)=(Tf;)(x) for each xe £ and 0 <i<k, and
hence the finiteness of £ implies that

lim || 7,(f;) = T(f)ll =0
for i=0,1,.

.. k. Now let for each n>1

=U{Y]: Y] 0 (BX\X) # &}

and

A,={yleB,: Y n(X\X)# J}.

Since 4, ., is a refinement of 4, for each n > 1, it follows that

W o> W,o --- o BX\X,

and by setting W= (\>_, W, we have

(T*6,, ) (W)= lim (T*0,,)(W,)

n— oo

> (T*8,,)(BX\X) >0

from the condition (II). Thus we can choose an integer N so that

(T*3 ) W,) <3(T*3., ) (W)
for all n> N. Next, note that 4, # ¢ (n=1,2,...) and 4, n B,,= (J when

m<n. Thus 4,, A,, ... are pairwise disjoint non-empty sets in X and hence
we can consider the function fin B(X) defined by

(—1),  if xed,

for some n>N

if xeX\ U 4,.
n=N
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Recall that x; € E, and thus by the definition of 7', we get for all n > N

(T, ) xp)= Y (=D"(T*6,,)(Y})+ > JINT*0,,)(Y7).

Viedy Vi eANU - LAy
But since
2 (T*0)(Y]) = (T, )(W,) = (T*0,,)(W)
and v
2 (T*0, )Y 7)< (T*6 )(WN\W,) <3(T*5.,)(W),

y]'-’eANu ceeUAdy—
it follows that

=>2(T*5, )W) if n is even
T 3 XT s
(1)) {< 2(T*5, )W),  if nis odd,
which  proves that 1lim,_ (7,f)(x;) does not exist because
(T*o0,,)(W)>0.

Case (b). Let T be a locally unital linear contraction on B(X) satisfy-
ing the condition (III). Then for each n>1, we can choose a point y,
in X such that y, #y and max, ., |f;(»,) —f:(»)| <1/n. Suppose first
that {y,,»,,.., } is an infinite set. We may assume that y,, y,,... are
mutually different. For each n>1 and fe B(X), we set

f(x), if xeX\E
(T, /) (x)=

L}X\{ 4 SAT*0,)+f(y)(T*5,)({»y}), if xeE,

so that {7} is a sequence of unital linear contractions on B(X) such that

lim || 7,(f) = T(f)ll =0

n— oo

for i=0,1,.., k. However, for any function f in B(X) such that
fly,)=(—1)"for each n>1, lim,_, (T, f)(x) does not exist, since

(T, /) (x7)= Jd(T*0 )+ (=1)"(T*0,)({ »})

L’X\{y}

for each n>1 and (T*J,,)({»y})>0 by the condition (III).
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Suppose next that {y,, y,,...} is a finite set. Then we can find a point
z in X such that z#y and f;(z)=f;(y) for i=0, 1, .., k. For each n>1 and
feB(X), we set

S(x), if xe X\E
(T, /) (x)=< (Tf)(x), if xe E and nis even
(v fA(T*0,) +f(2)(T*5,)({y}), if xeEandnisodd,

so that {7} is a sequence of unital linear contractions on B(X) such that
(T, f)(x)=(Tf,)(x) for every xe E and 0 <i<k. However, for any func-
tion fin B(X) such that f(z) #f(y), lim,_, (T, f)(xs) does not exist, since

(To 1 /) 7) = (T, x| = 1/(2) = f(WI(T*0,,)({ »})

for each n>1and (T*J,,)({ y}) >0 by the condition (III). QED

3.5. Proof of Theorem 5. Assume that f;, ..., f; satisfy the condition (iii)
and let 7 be a locally unital linear contraction on B(X). If T has the form
(I) on E, then it is BKW for {fy, f, ... fx} and | |z from Theorem 2. To
show the converse suppose that 7" does not have the form (I) on E and
hence there exists a point z in FE such that supp(7*J.) ¢ E. If

(T*5.)(fX\X) >0, then T is not BKW for {fo,f},...fi} and | [l from
Theorem 4. If (T*5.)(BX\X) =0, then there exists a point y in X \E such
that (7*0.)({y})>0 because T*(.) is a regular measure with
supp(7*4.) ¢ E. Then we have inf, , ..y max, o, |f;(x)—f:(»)[=0 by
the condition (iii) and hence T is not BKW for {fo,f1, ... c} and || |
from Theorem 4. Q.E.D

4. EXAMPLES

4.1. An example of {fi, ... [} satisfying conditions (i) and (ii). Let
X =C, the complex numbers, and E={z,, .., z,}, where m>2 and z, #z;
(i#j). For any finite sequence {a, ..., a,,_} of complex numbers, define

z', if zeE

I<i<m—1). 1
o, if zeX\E (I<ism—1) (1)

1=

We show that there is a finite sequence {a, .., a,, _;} such that the corre-
sponding functions f, ..., f,,_; in B(X) satisfy the conditions (i) and (ii) in
the first section. We note, as is well-known, that without any additional
hypothesis the functions fi, ..., f,,_; always satisfy the condition (ii). To
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find a sequence {a,..a, _;} such that the corresponding functions
fis o frn_ 1 satisfy the condition (i), let

1 m
a=— 3 [iz) (Isism—1) (2)
y=1
and
Si(z) —a Si(Zm_1) —ay
A= : : : (3)
fmfl(Zl)_amfl fmfl(szl)_amfl
By an elementary calculation we observe that rank 4 =m — 1. Thus there
exists a unique solution (d,, ..., d,, ;) in C"~! for the equation
Si(z) —ay d,
s -4l )
f;nfl(zm)_amfl dmfl

Using this solution (d,, ..., d,,_,), we first prove the following

LEMMA. There exists a vector (B, ... B_1) in C" =Y, with (B, .y Bru_1)
# (0, ..., 0), such that the function

m—1

h(z)=Re ), B(fi(z)—a) (z€X) (5)

i=1
satisfies h | E=0.

Proof. Case (a). Suppose there is a number 1 <i<m—1 such that
d, eR, the real numbers. Then define a vector (S, ..., B,,_;) in C"~! by
the following relation

(ﬁla“'aﬂmfl)A: —191», (6)
where e, is the (row) vector in C” ' whose i-th coordinate is 1 and whose
other coordinate are all 0. It follows from (3), (4) and (5) that 2 | E=0.

Case (b). Suppose m>=3 and d; ¢R for all | <i<m—1. Then in par-
ticular, d,, d, ¢ R and we can choose two complex numbers ¢, and ¢, so
that

(¢y,c,)#(0,0) and Re(c;)=Re(c,) =Re(c,d, + c,d,)=0. (7)
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Define a vector (f,, ..., B,,_1) in C"~! by the relation

(B1se Bu_1) A=(cy, 5,0, ..., 0). (8)

It follows that (S, ..., f,,,_1)#(0,..,0) and i | E=0.

Case (c). Suppose m=2. It follows from (1) and (2) that
fi(z1)—a; #0 and Y7_, (fi(z;) —a,)=0. Hence d, = — 1 is a unique solu-
tion of the equation (4), and so thls is a part of Case (a). Q.ED

By the lemma, we write

o= i+ filz,)  (I<ism—1), 9)
where 5, denotes the complex conjugate of 8, (and we may assume without
loss of generality that 377" |8;|>>1). Then the corresponding functions
Sis s fru_y for {oy, ..., &, _,} satisfy the conditions (i) and (ii) as required.
We can give a shorter and easier proof in case of k =>m.

42. An example of a sequence {T,} of unital contractions for which
lim,,, (T, f;)(x) exists for all 1 <i<k but such that im,,_, (T, f)(x) fails
to exists for some fin B(X). Let X, E={z,,..,z,} and {f\, .. f,,_} be
as in 4.1 and define

T,f)z)=f(z+n) (10)

for each n>1 and fe B(X). Then {Tn} is a sequence of unital linear con-
tractions on B(X). Let u be the evaluation at the origin of X. Then
w(T,1)=1foralln>=1and lim,_, , u(T,f;) =a, for all 1 <i<k. However,
lim, , , w(T,f) fails to exist for any function f in B(X) such that
f(n)=(—1)" for all natural numbers n.

4.3. An example of X and E={x,, .., x,,} such that all locally unital
linear contractions on B(X) are BKW for {1,f\,..,fi} and || |z when-
ever {f\,..fi} satisfies conditions (i) and (ii). Let X={xy, ., X, 1},
E={xy, .., x,}, fo=1and let {1}, .., f;} be a finite collection of functions
in B(X) which satisfies the conditions (i) and (ii) in the first section. Then
an arbitrary locally unital linear contraction 7" on B(X) is BKW for
{1, f\, S} and || |z Actually let {7} be a net of contractions on B(X)
such that lim, |T,(f;) —T(f)lz=0 for i=0,1,..,m. Let yeE and
feB(X) be fixed arbitrarily. Then we have only to show that
lim, (7, f)(y)=(Tf)(y). As observed in the proof of Theorem 1, since
T(1)=1 on E and y€E, we can assume that {7%(d,)} converges in the
weak * topology to a probability measure on X, say #. Since

n(f) =hm (T, £)(y) =(Tf)(») =(T*o,)(f)  (0<i<k),
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it follows that » and T*(d,) agree on the linear span of { fy,f\, ... [}
hence #(h) = (T*6,)(h) = (Th)(y) because n and T*(J,) are positive. By the
condition (ii), there are scalars ¢y, ¢, ..., ¢, such that f(x)=3Y*_ ¢,f:(x)
for every x € E. Note that 4| E=0 and /(x,,, ;) > 1, hence by setting

1 k
czh(me) {f(x'"ﬂ)— ¥ el

i=0

we have f=ch+37_, c,f;. Therefore
lim (7, /)(y) =n(f) = en(h) + . cin(f3)

c(Th)(y) 2 =(Tf)(»)
as required.

44. An example of X, E={x,..x,}, and {f\, .. fi} for which the
converses of Theorems 2 and 4 do not hold. Throughout the remaider of
this section, let X be a set containing m + 2-points; Xy, ..., X,,5 X415 X 25
E={x,..x,} and {fi, ..., f,,} a subset of B(X) defined by

1, if x=x,

0, if x=x, 2<y<m)
flw=4y LT

s if X=X+

2, otherwise

and

1 if x=x;
(x)=4" ! =2, ..
Ji(x) {0’ i oxex  (=2em)

Let & be a function in B(X) defined by

=<Zf,.>—1, (11)
i=1
so that

h|E=0, h(x,.)=2 and h=1on X\(EU{x,..}). (12)

Accordingly {fi,..f,} satisfies the conditions (i) and (ii) in the first
section. Moreover we note that

inf — max [fi(x)—f;(x, )] =1 (13)

Xm+1#xeX 1<i<m
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44.1. Consider the following unital linear contraction 7 on B(X)
defined by

f(x), if x#x,
(T7)(x) = Sx)+f(x051) (14)

7 , if x=x,.

Then (T*6.)(fX\X)=0 and (T*J,)({x,,})=%, hence T satisfies
neither of the conditions (II) and (III). Moreover we see that 7 is not
BKW for {1, f}, ..., f,,} and | | z. In fact, set

S(x), if x#x,

(T2nf)(x): f(x])+f(xm+l)+f(xm+2)
3 P

if x=x,

and

Ty, () =T(f)

for each fe B(X) and n>1. Then {T,} is a sequence of unital linear con-
tractions on B(X) such that lim,_ . (7T,f)(x)=(Tf)(x) for all fe B(X)
and xe X\{x,}. Further by (14) we see that

im (7, f)(x)) =20, = (Tf)(x))  (I<i<m),

n— oo

where J,; is Kronecker’s delta function. But lim, , (7, f)(x,) fails to
exists for the following function f in B(X) defined by

f(x):{(l)j ii i;«éfe:
44.2. Let m>=2 and define
S(x), if x#x,
(TND= Sl ), (15)

Then T is a unital linear contraction on B(X) with supp(T*d, )=
{x5,x,, 41}, and hence T does not satisfy the condition (I). However T is
BKW for {1,f}, ../, and || |z Actually let {7,} be a net of contrac-
tions on B(X) such that lim, | 7,(f;) — T(f;)| z=0 for i=0, 1, ..., m, where
fo=1. Then by Theorem 1, we have

lim (77 £)(x,) = (Tf)(x,)
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for all fe B(X) and 2 <y <m. It only remains to show that

lim (75, /)(x1) = (T)(x1)

for all fe B(X). As in 4.3, we can assume that {7, *(J,,)} converges in the
weak* topology to a probability Radon measure on fX, say #. Then by
(11), (12), and (15),

=2 (T)(x1) = (T1)(x)) (16)

Also, n(f2)=(Tf>)(x;)=5 and 5(f;)=(Tf)(x;)=0 for each 3<i<m;
{x,})=14 and n({xs, .., x,,} ) =0. Further by (12) and (16),

IZJ/thdnzzn({ m+]} +’7ﬁX\{x1’ xm’xm+l})- (17)

On the other hand, since x,,x,,,; ¢SX\{x, .. X,,x, .} and
X5 # X,y 41, We have

n({xm+l})+n(ﬂX\{x1’ R ) merl})< 1 _”({XZ}): % (18)

Combining (17) and (18), we obtain #({x,,,,;})=1/2 and so 5=
(0., +0,,,,)/2. In other words, lim (T, f)(x,) = (Tf)(x,) for all fe B(X).
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