A Discrete Korovkin Theorem and BKW-Operators

Ryotaro Sato
Department of Mathematics, Faculty of Science, Okayama University, Okayama 700, Japan

AND
Sin-EI TAKAHASI
Department of Basic Technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992, Japan
Communicated by Dany Leviatan

Received August 8, 1994; accepted in revised form February 6, 1995

Abstract

We give a functional Korovkin-type theorem on $B(X)$, the space of bounded complex-valued functions on an arbitrary set X and investigate a BKW-operator on $B(X)$ for a finite collection of test functions with a suitable property and a seminorm defined by a finite subset of X. © 1996 Academic Press, Inc.

1. Introduction and Results

The first author [6] and G. Anastassiou [2,3] independently proved the following discrete Korovkin theorem.

Theorem A. Let Y be a countable set, $B(Y)$ the space of real-valued bounded functions on Y with the usual supremum norm $\left\|\|_{\infty}, y_{0} \in Y\right.$ and $\left\{g_{1}, \ldots, g_{k}\right\}$ a finite subset of $B(Y)$ which has the property that there are real constants $\beta_{1}, \ldots, \beta_{k}$ such that $\sum_{i=1}^{k} \beta_{i}\left(g_{i}(y)-g_{i}\left(y_{0}\right)\right) \geqslant 1$ for all $y \neq y_{0}$. If $\left\{T_{n}\right\}$ is a sequence of positive linear operators on $B(Y)$ such that $T_{n}(\mathbf{1})=\mathbf{1}$ for all $n \geqslant 1$ and $\lim _{n \rightarrow \infty}\left(T_{n} g_{i}\right)\left(y_{0}\right)=g_{i}\left(y_{0}\right)$ for $i=1, \ldots, k$, then $\lim _{n \rightarrow \infty}\left(T_{n} f\right)\left(y_{0}\right)=f\left(y_{0}\right)$ for all $f \in B(Y)$, where $\mathbf{1}$ is the identity of $B(Y)$.

We first give a simple proof of the above theorem by considering the Stone-Cech compactification of Y endowed with the discrete topology.

Throughout all sections except for the last section, let X be a set and $B(X)$ the Banach space of bounded complex-valued functions on X with the supremum norm. Let $E=\left\{x_{1}, \ldots, x_{m}\right\} \subset X, f_{0}=\mathbf{1}$, the identity of $B(X)$, and let $\left\{f_{1}, \ldots, f_{k}\right\}$ be a finite collection of functions in $B(X)$ which satisfies the following two conditions:
(i) There are complex constants $\beta_{1}, \ldots, \beta_{k}$ such that

$$
\operatorname{Re} \sum_{i=1}^{k} \beta_{i}\left\{f_{i}(x)-\frac{1}{m} \sum_{\gamma=1}^{m} f_{i}\left(x_{\gamma}\right)\right\}\left\{\begin{array}{lll}
\geqslant 1, & \text { if } & x \in X \backslash E \\
\geqslant 0, & \text { if } & x \in E
\end{array}\right.
$$

and
(ii)

$$
\operatorname{rank}\left(\begin{array}{ccc}
1 & \cdots & 1 \\
f_{1}\left(x_{1}\right) & \cdots & f_{1}\left(x_{m}\right) \\
\vdots & \cdots & \vdots \\
f_{k}\left(x_{1}\right) & \cdots & f_{k}\left(x_{m}\right)
\end{array}\right)=m
$$

Then we next prove the following Korovkin-type approximation theorem. This is a generalization of Theorem A and should be compared with Theorem 2.2.2 in the book by F. Altomare and M. Campiti [1], which is the analogon for positive approximation.

Theorem 1. Let (μ, η) be a pair of continuous linear functionals on $B(X)$ such that $\eta(\mathbf{1})=\|\mu\|, \quad \eta(f)=\sum_{\gamma=1}^{m} \alpha_{\gamma} f\left(x_{\gamma}\right) \quad(\forall f \in B(X))$, where $\alpha_{\gamma} \in \mathbf{R}$ $(\gamma=1, \ldots, m)$. If $\left\{\mu_{\lambda}\right\}$ is a net of linear functionals on $B(X)$ such that $\sup _{\lambda}\left\|\mu_{\lambda}\right\| \leqslant\|\mu\|$ and $\lim _{\lambda} \mu_{\lambda}\left(f_{i}\right)=\eta\left(f_{i}\right)$ for $i=0,1, \ldots, k$, then $\lim _{\lambda} \mu_{\lambda}(f)=$ $\eta(f)$ for all $f \in B(X)$.

Remark. In view of the above theorem, the following question occurs: If μ is a continuous linear functional on $B(X)$ and if $\left\{T_{\lambda}\right\}$ is a net of linear contractions on $B(X)$ such that $\lim _{\lambda} \mu\left(T_{\lambda} f_{i}\right)$ exists for $i=0,1, \ldots, k$, then does $\lim _{\lambda} \mu\left(T_{\lambda} f\right)$ exist for all $f \in B(X)$? As observed in 4.2 of the last section, we negatively answer this question even if μ is an evaluation at a point in X.

Following [7, 8], we recall the definition of BKW-operators. A bounded linear operator T on $B(X)$ is said to be $B K W$ for test functions $\left\{f_{0}, f_{1}, \ldots, f_{k}\right\}$ and the seminorm $\left\|\|_{E}\right.$ if $\left\{T_{\lambda}\right\}$ is a net of bounded linear operators on $B(X)$ such that $\lim _{\lambda}\left\|T_{\lambda}\right\|=\|T\|$ and $\lim _{\lambda}\left\|T_{\lambda}\left(f_{i}\right)-T\left(f_{i}\right)\right\|_{E}$ $=0$ for $i=0,1, \ldots, k$, then $\lim _{\lambda}\left\|T_{\lambda}(f)-T(f)\right\|_{E}=0$ for all $f \in B(X)$, where $\|f\|_{E}=\sup _{x \in E}|f(x)|(f \in B(X))$. We note that the condition " $\lim _{\lambda}\left\|T_{\lambda}\right\|=\|T\|$ " can be replaced by the condition "sup $\left\|T_{\lambda}\right\| \leqslant\|T\|$ " in the above definition (cf. [8, Lemma 1.1]). A linear operator T on $B(X)$ will be called locally unital (on E) if $(T \mathbf{1})(x)=1$ for every $x \in E$, and a contraction if $\|T\| \leqslant 1$. In particular, T is simply called unital if $(T \mathbf{1})(x)=1$ for all $x \in X$. We will notice that
" T is a unital contraction" \Leftrightarrow " T is positive and unital"
for any linear operator T on $B(X)$. The above theorem implies the following result which gives an information on locally unital linear contractions on $B(X)$ that are BKW for $\left\{f_{0}, f_{1}, \ldots, f_{k}\right\}$ and $\left\|\|_{E}\right.$.

Theorem 2. Let T be a locally unital linear contraction on $B(X)$ such that

$$
\begin{equation*}
(T f)(x)=\sum_{\gamma=1}^{m} f\left(x_{\gamma}\right) g_{\gamma}(x) \quad(\forall x \in E, \forall f \in B(X)) \tag{I}
\end{equation*}
$$

for some $g_{1}, \ldots, g_{m} \in B(X)$. Then T is $B K W$ for $\left\{f_{0}, f_{1}, \ldots, f_{k}\right\}$ and $\left\|\|_{E}\right.$.
The preceding theorem implies that the average of certain homomorphisms from $B(X)$ into itself is BKW for $\left\{f_{0}, f_{1}, \ldots, f_{k}\right\}$ and $\left\|\|_{E}\right.$ as observed in the following result.

Corollary 3. Let $\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ be a finite set consisting of maps from X into itself such that $\phi_{i}(E) \subset E(i=1, \ldots, N)$. For each i, let T_{i} be the composition operator on $B(X)$ defined by ϕ_{i}. Then the operator $\left(T_{1}+\cdots+T_{N}\right) / N$ is a unital BKW-contraction on $B(X)$ for $\left\{f_{0}, f_{1}, \ldots, f_{k}\right\}$ and $\left\|\|_{E}\right.$.

Let βX be the Stone-Cech compactification of X endowed with the discrete topology so that we can regard $B(X)$ as the Banach space $C(\beta X)$ of all continuous functions on βX. Let T be a locally unital linear contraction on $B(X)$ and T^{*} its adjoint operator. Then for each $x \in E, T^{*}\left(\delta_{x}\right)$ is a probability Radon measure on βX, where δ_{x} denotes the Dirac measure concentrated at x. Note that the condition (I) in Theorem 2 is equivalent to the following condition:
($\left.\mathrm{I}^{\prime}\right) \operatorname{supp}\left(T^{*} \delta_{x}\right) \subset E$ for every $x \in E$.
Here "supp" denotes the support of a measure on βX. We further consider the conditions:
(II) There exists a point x_{T} in E such that $\left(T^{*} \delta_{x_{T}}\right)(\beta X \backslash X)>0$.
(III) There exists a point x_{T} in E and a point y in $X \backslash E$ such that $\left(T^{*} \delta_{x_{T}}\right)(\{y\})>0$ and $\inf _{y \neq x \in X} \max _{1 \leqslant i \leqslant k}\left|f_{i}(x)-f_{i}(y)\right|=0$.

Note that if T satisfies the condition (I) then, since $\left(T^{*} \delta_{x}\right)(\beta X \backslash E)=0$ for every $x \in E$ by (I^{\prime}), T satisfies neither of the conditions (II) and (III). The following result asserts that any locally unital linear contraction on $B(X)$ which satisfies (II) or (III) is not BKW for $\left\{f_{0}, f_{1}, \ldots, f_{k}\right\}$ and $\left\|\|_{E}\right.$.

Theorem 4. Let T be a locally unital linear contraction on $B(X)$ which satisfies (II) or (III). Then there exists a sequence $\left\{T_{n}\right\}$ of unital linear contractions on $B(X)$ such that $\lim _{n \rightarrow \infty}\left\|T_{n}\left(f_{i}\right)-T\left(f_{i}\right)\right\|_{E}=0$ for every $i=0,1, \ldots, k$ but $\lim _{n \rightarrow \infty}\left(T_{n} f\right)\left(x_{T}\right)$ fails to exist for some $f \in B(X)$.

Remark. In case of $X=\mathbf{N}$, the natural numbers, $B(X)$ is the space l^{∞} of all bounded sequence of complex numbers, and the unilateral backward
shift operator T on l^{∞} satisfies the condition (III), whenever each f_{i} is constant on $\mathbf{N} \backslash E$. On the other hand, if T is a linear operator on l^{∞} such that

$$
\left(T\left\{a_{n}\right\}\right)_{n}=b_{n}\left(\operatorname{Lim}_{n \rightarrow \infty} a_{n}\right) \quad\left(n \in \mathbf{N},\left\{a_{n}\right\} \in l^{\infty}\right),
$$

where $\operatorname{Lim}_{n \rightarrow \infty}$ denotes a Banach limit and $\left\{b_{n}\right\}$ is an element of l^{∞} with $b_{n}=1(\forall n \in E)$ and $\left|b_{n}\right| \leqslant 1(\forall n \in \mathbf{N})$, then it is a locally unital contraction and satisfies the condition (II).

The following result asserts that all locally unital linear contractions on $B(X)$ that are BKW for $\left\{f_{0}, f_{1}, \ldots, f_{k}\right\}$ and $\left\|\|_{E}\right.$ have the form (I) on E when no f_{i} is "notched".

Theorem 5. Assume that f_{1}, \ldots, f_{k} satisfy the following condition:
(iii) $\forall y \in X \backslash E, \exists\left\{y_{1}, y_{2}, \ldots\right\} \subset X \left\lvert\, \begin{aligned} & y_{n} \neq y \quad(n=1,2, \ldots), \\ & \lim _{n \rightarrow \infty} f_{i}\left(y_{n}\right)=f_{i}(y) \quad(1 \leqslant i \leqslant k) .\end{aligned}\right.$

Then a locally unital linear contraction T on $B(X)$ is $B K W$ for $\left\{f_{0}, f_{1}, \ldots, f_{k}\right\}$ and $\left\|\|_{E}\right.$ if and only if it has the form (I) on E.

2. A Simple Proof of Theorem A

Let $\left\{T_{n}\right\}$ be a sequence of positive linear operators on $B(Y) \cong C(\beta Y)$ such that $T_{n}(\mathbf{1})=\mathbf{1}$ for all $n \geqslant 1$ and $y_{0} \in Y$. For each n, we consider a probability Radon measure μ_{n} on βY defined by $\mu_{n}(f)=\left(T_{n} f\right)\left(y_{0}\right)$ for every $f \in C(\beta Y)$. Since

$$
\sum_{i=1}^{k} \beta_{i}\left\{g_{i}(y)-g_{i}\left(y_{0}\right)\right\} \geqslant 1 \quad\left(y \neq y_{0}\right)
$$

for the real constants $\beta_{1}, \ldots, \beta_{k}$ by hypothesis, the function $h=$ $\sum_{i=1}^{k} \beta_{i}\left\{g_{i}-g_{i}\left(y_{0}\right) \mathbf{1}\right\}$ satisfies $h(\omega) \geqslant 1$ for every $\omega \in \beta Y$ with $\omega \neq y_{0}$. Suppose that $\lim _{n \rightarrow \infty} \mu_{n}\left(g_{i}\right)=g_{i}\left(y_{0}\right)$ for $i=1, \ldots, k$. It follows that $\lim _{n \rightarrow \infty} \mu_{n}(h)=0$. For $f \in B(Y)$ we have $\left|f(\omega)-f\left(y_{0}\right)\right| \leqslant 2\|f\|_{\infty} h(\omega)$ for all $\omega \in \beta Y$. Then

$$
\left|\mu_{n}(f)-f\left(y_{0}\right)\right|=\left|\mu_{n}\left(f-f\left(y_{0}\right) \mathbf{1}\right)\right| \leqslant 2\|f\|_{\infty} \mu_{n}(h) \rightarrow 0 \quad(\text { as } n \rightarrow \infty),
$$

and this finishes the proof.
Q.E.D

Remark. Comparing the above proof with Theorem 1 in Nishishiraho [5] may be interesting.

3. Proof of Results

We recall that $E=\left\{x_{1}, \ldots, x_{m}\right\} \subset X$ and $\left\{f_{1}, \ldots, f_{k}\right\} \subset B(X)$ satisfy the conditions (i) and (ii), by hypothesis. Throughout this section, let h be the function in $B(X)$ defined by

$$
h(x)=\operatorname{Re} \sum_{i=1}^{k} \beta_{i}\left\{f_{i}(x)-\frac{1}{m} \sum_{\gamma=1}^{m} f_{i}\left(x_{\gamma}\right)\right\}
$$

for every $x \in X$. Note that $h \mid E=0$. In fact,

$$
\begin{aligned}
\sum_{\zeta=1}^{m} h\left(x_{\zeta}\right) & =\operatorname{Re} \sum_{i=1}^{k} \sum_{\zeta=1}^{m} \beta_{i}\left\{f_{i}\left(x_{\zeta}\right)-\frac{1}{m} \sum_{\gamma=1}^{m} f_{i}\left(x_{\gamma}\right)\right\} \\
& =\operatorname{Re} \sum_{i=1}^{k} \beta_{i}\left\{\sum_{\zeta=1}^{m} f_{i}\left(x_{\zeta}\right)-\frac{m}{m} \sum_{\gamma=1}^{m} f_{i}\left(x_{\gamma}\right)\right\} \\
& =0,
\end{aligned}
$$

so that $h\left(x_{\zeta}\right)=0$ for $\zeta=1, \ldots, m$, since $h \mid E \geqslant 0$ by the condition (i).
3.1. Proof of Theorem 1. Let (μ, η) be a pair of continuous linear functionals on $B(X)$ such that $\eta(\mathbf{1})=\|\mu\|, \eta(f)=\sum_{\gamma=1}^{m} \alpha_{\gamma} f\left(x_{\gamma}\right) \quad(\forall f \in B(X))$, where $\alpha_{\gamma} \in \mathbf{R}(\gamma=1, \ldots, m)$. Suppose $\left\{\mu_{\lambda}\right\}$ is a net of linear functionals on $B(X)$ such that $\sup _{\lambda}\left\|\mu_{\lambda}\right\| \leqslant\|\mu\|$ and $\lim _{\lambda} \mu_{\lambda}\left(f_{i}\right)=\eta\left(f_{i}\right)$ for $i=0,1, \ldots, k$ and let $f \in B(X)$ be any function. Then we have to show that $\lim _{\lambda} \mu_{\lambda}(f)=\eta(f)$. To do this let $\left\{\mu_{\lambda^{\prime}}(f)\right\}$ be any subnet of $\left\{\mu_{\lambda}(f)\right\}$. Since $\left\|\mu_{\lambda^{\prime}}\right\| \leqslant\|\mu\|$ for all λ^{\prime}, there exists a weak*-convergent subnet $\left\{\mu_{\lambda^{\prime \prime}}\right\}$ of $\left\{\mu_{\lambda^{\prime}}\right\}$. Let $\tilde{\mu}$ be the weak*-limit of $\left\{\mu_{\lambda^{\prime \prime}}\right\}$, so that $\|\tilde{\mu}\| \leqslant\|\mu\|$. Also since $\tilde{\mu}(\mathbf{1})=\lim _{\lambda^{\prime \prime}} \mu_{\lambda^{\prime \prime}}(\mathbf{1})=\eta(\mathbf{1})=\|\mu\|$, it follows that $\tilde{\mu}$ is positive. Note that

$$
\tilde{\mu}\left(f_{i}\right)=\lim _{\lambda^{\prime \prime}} \mu_{\lambda^{\prime \prime}}\left(f_{i}\right)=\eta\left(f_{i}\right)
$$

for $i=0,1, \ldots, k$. Then we have

$$
\begin{aligned}
\tilde{\mu}(h) & =\operatorname{Re} \tilde{\mu}\left(\sum_{i=1}^{k} \beta_{i}\left\{f_{i}-\frac{1}{m} \sum_{\gamma=1}^{m} f_{i}\left(x_{\gamma}\right)\right\}\right) \\
& =\operatorname{Re} \eta\left(\sum_{i=1}^{k} \beta_{i}\left\{f_{i}-\frac{1}{m} \sum_{\gamma=1}^{m} f_{i}\left(x_{\gamma}\right)\right\}\right) \\
& =\eta(h)=\sum_{\zeta=1}^{m} \alpha_{\zeta} h\left(x_{\zeta}\right) \\
& =0 \quad\left(\text { since } h=0 \text { on } E=\left\{x_{1}, \ldots, x_{m}\right\}\right) .
\end{aligned}
$$

Now by the condition (ii), we can find complex constants $c_{0}, c_{1}, \ldots, c_{k}$ such that

$$
f(x)=\sum_{i=0}^{k} c_{i} f_{i}(x)
$$

for every $x \in E$. Set $g=f-\sum_{i=0}^{k} c_{i} f_{i}$. Since $g \mid E=0$ and $h(x) \geqslant 1$ for every $x \in X \backslash E$ by condition (i), it follows that

$$
|\tilde{\mu}(g)| \leqslant \tilde{\mu}(|g|) \leqslant \tilde{\mu}(\|g\| h)=\|g\| \tilde{\mu}(h)=0 ;
$$

hence we have

$$
\begin{aligned}
\lim _{\lambda^{\prime \prime}} \mu_{\lambda^{\prime \prime}}(f) & =\tilde{\mu}(f)=\sum_{i=0}^{k} c_{i} \tilde{\mu}\left(f_{i}\right)=\sum_{i=0}^{k} c_{i} \eta\left(f_{i}\right) \\
& =\eta\left(\sum_{i=0}^{k} c_{i} f_{i}\right)=\eta\left(g+\sum_{i=0}^{k} c_{i} f_{i}\right)=\eta(f) .
\end{aligned}
$$

In other words, $\lim _{\lambda} \mu_{\lambda}(f)=\eta(f)$.
3.2. Proof of Theorem 2. Let T be a locally unital linear contraction on $B(X)$ which has the form (I) on E, i.e.,

$$
(T f)(x)=\sum_{\gamma=1}^{m} f\left(x_{\gamma}\right) g_{\gamma}(x) \quad(\forall x \in E, \forall f \in B(X))
$$

for some $g_{1}, \ldots, g_{m} \in B(X)$. Here we note that if $x \in E$ then $g_{\gamma}(x)=$ $\left(T^{*} \delta_{x}\right)\left(\left\{x_{\gamma}\right\}\right) \geqslant 0$ for every $x_{\gamma} \in E=\left\{x_{1}, \ldots, x_{m}\right\}$ and $\sum_{\gamma=1}^{m} g_{\gamma}(x)=1$, because $T^{*}\left(\delta_{x}\right)$ is probability Radon measure on βX which follows from the fact that $(T \mathbf{1})(x)=1$. Suppose $\left\{T_{\lambda}\right\}$ is a net of linear contractions on $B(X)$ such that $\lim _{\lambda}\left\|T_{\lambda}\left(f_{i}\right)-T\left(f_{i}\right)\right\|_{E}=0$ for $i=0,1, \ldots, k$. Let $f \in B(X)$ and $x_{\zeta} \in E$ be fixed arbitrarily. Consider the functional η on $B(X)$ defined by

$$
\eta(g)=(T g)\left(x_{\zeta}\right)\left(=\sum_{\gamma=1}^{m} g\left(x_{\gamma}\right) g_{\gamma}\left(x_{\zeta}\right)\right)
$$

for every $g \in B(X)$. Then we have $\eta(\mathbf{1})=\sum_{\gamma=1}^{m} g_{\gamma}\left(x_{\zeta}\right)=(T \mathbf{1})\left(x_{\zeta}\right)=1$. Let μ be the evaluation at x_{ζ} and so $\eta(\mathbf{1})=1=\|\mu\|$. Moreover,

$$
\lim _{\lambda} \mu\left(T_{\lambda} f_{i}\right)=\lim _{\lambda}\left(T_{\lambda} f_{i}\right)\left(x_{\zeta}\right)=\left(T f_{i}\right)\left(x_{\zeta}\right)=\eta\left(f_{i}\right)
$$

for $i=0,1, \ldots, k$. Therefore, by Theorem 1 , we have

$$
\lim _{\lambda}\left(T_{\lambda} f\right)\left(x_{\zeta}\right)=\eta(f)=\sum_{\gamma=1}^{m} f\left(x_{\gamma}\right) g_{\gamma}\left(x_{\zeta}\right)=(T f)\left(x_{\zeta}\right) .
$$

Since E is a finite set, it follows that $\lim _{\lambda}\left\|T_{\lambda}(f)-T(f)\right\|_{E}=0$. In other words, T is BKW for $\left\{f_{0}, f_{1}, \ldots, f_{k}\right\}$ and $\left\|\|_{E}\right.$.
Q.E.D
3.3. Proof of Corollary 3. Let $\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ be a finite set consisting of maps from X into itself such that $\phi_{i}(E) \subset E(i=1, \ldots, N)$. For each i, let T_{i} be the composition operator on $B(X)$ defined by ϕ_{i} and set $T=$ $\left(T_{1}+\cdots+T_{N}\right) / N$. Then it is obvious that T is a unital linear contraction on $B(X)$. For each $x \in X$ and $1 \leqslant \gamma \leqslant m$, let

$$
g_{\gamma}(x)=\frac{\#\left\{1 \leqslant i \leqslant N: \varphi_{i}(x)=x_{\gamma}\right\}}{N} .
$$

Then each g_{γ} is a function in $B(X)$ and we can easily see that

$$
(T f)(x)=\sum_{\gamma=1}^{m} f\left(x_{\gamma}\right) g_{\gamma}(x)
$$

for every $x \in E$ and $f \in B(X)$. Hence the corollary follows from Theorem 2. Q.E.D
3.4. Proof of Theorem 4. Case (a). Let T be a locally unital linear contraction on $B(X)$ satisfying the condition (II). Since βX is totally disconnected, it is zero dimensional (i.e., the clopen sets form a base for βX) (cf. [4, Theorem 3.5]). Then for each $n \geqslant 1$, we can find a finite collection $\Delta_{n}=\left\{Y_{1}^{n}, \ldots, Y_{\alpha(n)}^{n}\right\}$ of pairwise disjoint non-empty clopen sets in βX such that

$$
\beta X=Y_{1}^{n} \cup \cdots \cup Y_{\alpha(n)}^{n} \quad \text { and } \quad\left|f_{i}(x)-f_{i}(y)\right|<\frac{1}{n} \quad(0 \leqslant i \leqslant k)
$$

for all $x, y \in Y_{j}^{n}, j=1, \ldots, \alpha(n)$. Here, if necessary, taking a common refinement of Δ_{n} and Δ_{n+1}, we may assume without loss of generality that Δ_{n+1} is a refiment of Δ_{n} for each n. Note that each $Y_{j}^{n} \cap X$ is a non-empty set, hence choose a point y_{j}^{n} in $Y_{j}^{n} \cap X$ and set $B_{n}=\left\{y_{1}^{n}, \ldots, y_{\alpha(n)}^{n}\right\}$. Since each Y_{j}^{n} is clopen in βX and X is dense in βX, it follows that if $Y_{j}^{n} \cap(\beta X \backslash X)$ is a non-empty set, then $Y_{j}^{n} \cap X$ is an infinite set. Therefore we can choose again these points y_{j}^{n} so that if $m<n$ and $Y_{j}^{n} \cap(\beta X \backslash X) \neq \varnothing$, then $y_{j}^{n} \notin B_{m}$. We consider the sequence $\left\{T_{n}\right\}$ of linear operators on $B(X)$ defined by

$$
\left(T_{n} f\right)(x)= \begin{cases}f(x), & \text { if } \quad x \in X \backslash E \\ \sum_{j=1}^{\alpha(n)} f\left(y_{j}^{n}\right)\left(T^{*} \delta_{x}\right)\left(Y_{j}^{n}\right), & \text { if } x \in E\end{cases}
$$

for every $f \in B(X)$ and $n \geqslant 1$. Since T is locally unital (on E) by hypothesis, it follows that each T_{n} is unital and positive. Moreover,

$$
\begin{aligned}
\left|\left(T_{n} f_{i}\right)(x)-\left(T f_{i}\right)(x)\right| & \leqslant \sum_{j=1}^{\alpha(n)} \int_{Y_{j}^{n}}\left|f_{i}\left(y_{j}^{n}\right)-f_{i}(\omega)\right| d\left(T^{*} \delta_{x}\right)(\omega) \\
& \leqslant \sum_{j=1}^{\alpha(n)} \frac{1}{n}\left(T^{*} \delta_{x}\right)\left(Y_{j}^{n}\right)=\frac{1}{n}
\end{aligned}
$$

for each $n \geqslant 1, x \in E$ and $0 \leqslant i \leqslant k$. After taking the limit with respect to n, we see that $\lim _{n \rightarrow \infty}\left(T_{n} f_{i}\right)(x)=\left(T f_{i}\right)(x)$ for each $x \in E$ and $0 \leqslant i \leqslant k$, and hence the finiteness of E implies that

$$
\lim _{n \rightarrow \infty}\left\|T_{n}\left(f_{i}\right)-T\left(f_{i}\right)\right\|_{E}=0
$$

for $i=0,1, \ldots, k$. Now let for each $n \geqslant 1$

$$
W_{n}=\bigcup\left\{Y_{j}^{n}: Y_{j}^{n} \cap(\beta X \backslash X) \neq \varnothing\right\}
$$

and

$$
A_{n}=\left\{y_{j}^{n} \in B_{n}: Y_{j}^{n} \cap(\beta X \backslash X) \neq \varnothing\right\} .
$$

Since Δ_{n+1} is a refinement of Δ_{n} for each $n \geqslant 1$, it follows that

$$
W_{1} \supset W_{2} \supset \cdots \supset \beta X \backslash X,
$$

and by setting $W=\bigcap_{n=1}^{\infty} W_{n}$ we have

$$
\left(T^{*} \delta_{x_{T}}\right)(W)=\lim _{n \rightarrow \infty}\left(T^{*} \delta_{x_{T}}\right)\left(W_{n}\right) \geqslant\left(T^{*} \delta_{x_{T}}\right)(\beta X \backslash X)>0
$$

from the condition (II). Thus we can choose an integer N so that

$$
\left(T^{*} \delta_{x_{T}}\right)\left(W_{n}\right)<\frac{4}{3}\left(T^{*} \delta_{x_{T}}\right)(W)
$$

for all $n \geqslant N$. Next, note that $A_{n} \neq \varnothing(n=1,2, \ldots)$ and $A_{n} \cap B_{m}=\varnothing$ when $m<n$. Thus A_{1}, A_{2}, \ldots are pairwise disjoint non-empty sets in X and hence we can consider the function f in $B(X)$ defined by

$$
f(x)= \begin{cases}(-1)^{n}, & \text { if } \quad x \in A_{n} \text { for some } n \geqslant N \\ 0, & \text { if } x \in X \backslash_{n=N}^{\infty} A_{n} .\end{cases}
$$

Recall that $x_{T} \in E$, and thus by the definition of T_{n} we get for all $n \geqslant N$

$$
\left(T_{n} f\right)\left(x_{T}\right)=\sum_{y_{j}^{n} \in A_{n}}(-1)^{n}\left(T^{*} \delta_{x_{T}}\right)\left(Y_{j}^{n}\right)+\sum_{y_{j}^{n} \in A_{N} \cup \cdots \cup A_{n-1}} f\left(y_{j}^{n}\right)\left(T^{*} \delta_{x_{T}}\right)\left(Y_{j}^{n}\right) .
$$

But since

$$
\sum_{y_{j}^{n} \in A_{n}}\left(T^{*} \delta_{x_{T}}\right)\left(Y_{j}^{n}\right)=\left(T^{*} \delta_{x_{T}}\right)\left(W_{n}\right) \geqslant\left(T^{*} \delta_{x_{T}}\right)(W)
$$

and

$$
\sum_{y_{j}^{n} \in A_{N} \cup \cdots \cup A_{n-1}}\left(T^{*} \delta_{x_{T}}\right)\left(Y_{j}^{n}\right) \leqslant\left(T^{*} \delta_{x_{T}}\right)\left(W_{N} \backslash W_{n}\right)<\frac{1}{3}\left(T^{*} \delta_{x_{T}}\right)(W),
$$

it follows that

$$
\left(T_{n} f\right)(x) \begin{cases}\geqslant \frac{2}{3}\left(T^{*} \delta_{x_{T}}\right)(W), & \text { if } n \text { is even } \\ \leqslant-\frac{2}{3}\left(T^{*} \delta_{x_{T}}\right)(W), & \text { if } n \text { is odd, }\end{cases}
$$

which proves that $\lim _{n \rightarrow \infty}\left(T_{n} f\right)\left(x_{T}\right)$ does not exist because $\left(T^{*} \delta_{x_{T}}\right)(W)>0$.

Case (b). Let T be a locally unital linear contraction on $B(X)$ satisfying the condition (III). Then for each $n \geqslant 1$, we can choose a point y_{n} in X such that $y_{n} \neq y$ and $\max _{1 \leqslant i \leqslant k}\left|f_{i}\left(y_{n}\right)-f_{i}(y)\right|<1 / n$. Suppose first that $\left\{y_{1}, y_{2}, \ldots,\right\}$ is an infinite set. We may assume that y_{1}, y_{2}, \ldots are mutually different. For each $n \geqslant 1$ and $f \in B(X)$, we set

$$
\left(T_{n} f\right)(x)= \begin{cases}f(x), & \text { if } x \in X \backslash E \\ \int_{\beta X \backslash\{y\}} f d\left(T^{*} \delta_{x}\right)+f\left(y_{n}\right)\left(T^{*} \delta_{x}\right)(\{y\}), & \text { if } x \in E,\end{cases}
$$

so that $\left\{T_{n}\right\}$ is a sequence of unital linear contractions on $B(X)$ such that

$$
\lim _{n \rightarrow \infty}\left\|T_{n}\left(f_{i}\right)-T\left(f_{i}\right)\right\|_{E}=0
$$

for $i=0,1, \ldots, k$. However, for any function f in $B(X)$ such that $f\left(y_{n}\right)=(-1)^{n}$ for each $n \geqslant 1, \lim _{n \rightarrow \infty}\left(T_{n} f\right)\left(x_{T}\right)$ does not exist, since

$$
\left(T_{n} f\right)\left(x_{T}\right)=\int_{\beta X \backslash\{y\}} f d\left(T^{*} \delta_{x_{T}}\right)+(-1)^{n}\left(T^{*} \delta_{x_{T}}\right)(\{y\})
$$

for each $n \geqslant 1$ and $\left(T^{*} \delta_{x_{T}}\right)(\{y\})>0$ by the condition (III).

Suppose next that $\left\{y_{1}, y_{2}, \ldots\right\}$ is a finite set. Then we can find a point z in X such that $z \neq y$ and $f_{i}(z)=f_{i}(y)$ for $i=0,1, \ldots, k$. For each $n \geqslant 1$ and $f \in B(X)$, we set

$$
\left(T_{n} f\right)(x)= \begin{cases}f(x), & \text { if } x \in X \backslash E \\ (T f)(x), & \text { if } x \in E \text { and } n \text { is even } \\ \int_{\beta X \backslash\{y\}} f d\left(T^{*} \delta_{x}\right)+f(z)\left(T^{*} \delta_{x}\right)(\{y\}), & \text { if } x \in E \text { and } n \text { is odd }\end{cases}
$$

so that $\left\{T_{n}\right\}$ is a sequence of unital linear contractions on $B(X)$ such that $\left(T_{n} f_{i}\right)(x)=\left(T f_{i}\right)(x)$ for every $x \in E$ and $0 \leqslant i \leqslant k$. However, for any function f in $B(X)$ such that $f(z) \neq f(y), \lim _{n \rightarrow \infty}\left(T_{n} f\right)\left(x_{T}\right)$ does not exist, since

$$
\left|\left(T_{2 n-1} f\right)\left(x_{T}\right)-\left(T_{2 n} f\right)\left(x_{T}\right)\right|=|f(z)-f(y)|\left(T^{*} \delta_{x_{T}}\right)(\{y\})
$$

for each $n \geqslant 1$ and $\left(T^{*} \delta_{x_{T}}\right)(\{y\})>0$ by the condition (III).
Q.E.D
3.5. Proof of Theorem 5. Assume that f_{1}, \ldots, f_{k} satisfy the condition (iii) and let T be a locally unital linear contraction on $B(X)$. If T has the form (I) on E, then it is BKW for $\left\{f_{0}, f_{1}, \ldots, f_{k}\right\}$ and $\left\|\|_{E}\right.$ from Theorem 2. To show the converse suppose that T does not have the form (I) on E and hence there exists a point z in E such that $\operatorname{supp}\left(T^{*} \delta_{z}\right) \not \subset E$. If $\left(T^{*} \delta_{z}\right)(\beta X \backslash X)>0$, then T is not BKW for $\left\{f_{0}, f_{1}, \ldots, f_{k}\right\}$ and $\left\|\|_{E}\right.$ from Theorem 4. If $\left(T^{*} \delta_{z}\right)(\beta X \backslash X)=0$, then there exists a point y in $X \backslash E$ such that $\left(T^{*} \delta_{z}\right)(\{y\})>0$ because $T^{*}\left(\delta_{z}\right)$ is a regular measure with $\operatorname{supp}\left(T^{*} \delta_{z}\right) \not \subset E$. Then we have $\inf _{y \neq x \in X} \max _{1 \leqslant i \leqslant k}\left|f_{i}(x)-f_{i}(y)\right|=0$ by the condition (iii) and hence T is not BKW for $\left\{f_{0}, f_{1}, \ldots, f_{k}\right\}$ and $\left\|\|_{E}\right.$ from Theorem 4.
Q.E.D

4. Examples

4.1. An example of $\left\{f_{1}, \ldots, f_{k}\right\}$ satisfying conditions (i) and (ii). Let $X=\mathbf{C}$, the complex numbers, and $E=\left\{z_{1}, \ldots, z_{m}\right\}$, where $m \geqslant 2$ and $z_{i} \neq z_{j}$ $(i \neq j)$. For any finite sequence $\left\{\alpha_{1}, \ldots, \alpha_{m-1}\right\}$ of complex numbers, define

$$
f_{i}(z)=\left\{\begin{array}{lll}
z^{i}, & \text { if } & z \in E \tag{1}\\
\alpha_{i}, & \text { if } & z \in X \backslash E
\end{array} \quad(1 \leqslant i \leqslant m-1) .\right.
$$

We show that there is a finite sequence $\left\{\alpha_{1}, \ldots, \alpha_{m-1}\right\}$ such that the corresponding functions f_{1}, \ldots, f_{m-1} in $B(X)$ satisfy the conditions (i) and (ii) in the first section. We note, as is well-known, that without any additional hypothesis the functions f_{1}, \ldots, f_{m-1} always satisfy the condition (ii). To
find a sequence $\left\{\alpha_{1}, \ldots, \alpha_{m-1}\right\}$ such that the corresponding functions f_{1}, \ldots, f_{m-1} satisfy the condition (i), let

$$
\begin{equation*}
a_{i}=\frac{1}{m} \sum_{\gamma=1}^{m} f_{i}\left(z_{\gamma}\right) \quad(1 \leqslant i \leqslant m-1) \tag{2}
\end{equation*}
$$

and

$$
A=\left(\begin{array}{ccc}
f_{1}\left(z_{1}\right)-a_{1} & \cdots & f_{1}\left(z_{m-1}\right)-a_{1} \tag{3}\\
\vdots & \vdots & \vdots \\
f_{m-1}\left(z_{1}\right)-a_{m-1} & \cdots & f_{m-1}\left(z_{m-1}\right)-a_{m-1}
\end{array}\right) .
$$

By an elementary calculation we observe that rank $A=m-1$. Thus there exists a unique solution $\left(d_{1}, \ldots, d_{m-1}\right)$ in \mathbf{C}^{m-1} for the equation

$$
\left(\begin{array}{c}
f_{1}\left(z_{m}\right)-a_{1} \tag{4}\\
\vdots \\
f_{m-1}\left(z_{m}\right)-a_{m-1}
\end{array}\right)=A\left(\begin{array}{c}
d_{1} \\
\vdots \\
d_{m-1}
\end{array}\right)
$$

Using this solution $\left(d_{1}, \ldots, d_{m-1}\right)$, we first prove the following

Lemma. There exists a vector $\left(\beta_{1}, \ldots, \beta_{m-1}\right)$ in \mathbf{C}^{m-1}, with $\left(\beta_{1}, \ldots, \beta_{m-1}\right)$ $\neq(0, \ldots, 0)$, such that the function

$$
\begin{equation*}
h(z)=\operatorname{Re} \sum_{i=1}^{m-1} \beta_{i}\left(f_{i}(z)-a_{i}\right) \quad(z \in X) \tag{5}
\end{equation*}
$$

satisfies $h \mid E=0$.
Proof. Case (a). Suppose there is a number $1 \leqslant i \leqslant m-1$ such that $d_{i} \in \mathbf{R}$, the real numbers. Then define a vector $\left(\beta_{1}, \ldots, \beta_{m-1}\right)$ in \mathbf{C}^{m-1} by the following relation

$$
\begin{equation*}
\left(\beta_{1}, \ldots, \beta_{m-1}\right) A=\sqrt{-1} \mathbf{e}_{i} \tag{6}
\end{equation*}
$$

where \mathbf{e}_{i} is the (row) vector in \mathbf{C}^{m-1} whose i-th coordinate is 1 and whose other coordinate are all 0 . It follows from (3), (4) and (5) that $h \mid E=0$.

Case (b). Suppose $m \geqslant 3$ and $d_{i} \notin \mathbf{R}$ for all $1 \leqslant i \leqslant m-1$. Then in particular, $d_{1}, d_{2} \notin \mathbf{R}$ and we can choose two complex numbers c_{1} and c_{2} so that

$$
\begin{equation*}
\left(c_{1}, c_{2}\right) \neq(0,0) \quad \text { and } \quad \operatorname{Re}\left(c_{1}\right)=\operatorname{Re}\left(c_{2}\right)=\operatorname{Re}\left(c_{1} d_{1}+c_{2} d_{2}\right)=0 \tag{7}
\end{equation*}
$$

Define a vector $\left(\beta_{1}, \ldots, \beta_{m-1}\right)$ in \mathbf{C}^{m-1} by the relation

$$
\begin{equation*}
\left(\beta_{1}, \ldots, \beta_{m-1}\right) A=\left(c_{1}, c_{2}, 0, \ldots, 0\right) \tag{8}
\end{equation*}
$$

It follows that $\left(\beta_{1}, \ldots, \beta_{m-1}\right) \neq(0, \ldots, 0)$ and $h \mid E=0$.
Case (c). Suppose $m=2$. It follows from (1) and (2) that $f_{1}\left(z_{1}\right)-a_{1} \neq 0$ and $\sum_{i=1}^{2}\left(f_{1}\left(z_{i}\right)-a_{1}\right)=0$. Hence $d_{1}=-1$ is a unique solution of the equation (4), and so this is a part of Case (a).
Q.E.D

By the lemma, we write

$$
\begin{equation*}
\alpha_{i}=\bar{\beta}_{i}+\frac{1}{m} \sum_{\gamma=1}^{m} f_{i}\left(z_{\gamma}\right) \quad(1 \leqslant i \leqslant m-1) \tag{9}
\end{equation*}
$$

where $\bar{\beta}_{i}$ denotes the complex conjugate of β_{i} (and we may assume without loss of generality that $\sum_{i=1}^{m-1}\left|\beta_{i}\right|^{2} \geqslant 1$). Then the corresponding functions f_{1}, \ldots, f_{m-1} for $\left\{\alpha_{1}, \ldots, \alpha_{m-1}\right\}$ satisfy the conditions (i) and (ii) as required. We can give a shorter and easier proof in case of $k \geqslant m$.
4.2. An example of a sequence $\left\{T_{n}\right\}$ of unital contractions for which $\lim _{n \rightarrow \infty}\left(T_{n} f_{i}\right)(x)$ exists for all $1 \leqslant i \leqslant k$ but such that $\lim _{n \rightarrow \infty}\left(T_{n} f\right)(x)$ fails to exists for some f in $B(X)$. Let $X, E=\left\{z_{1}, \ldots, z_{m}\right\}$ and $\left\{f_{1}, \ldots, f_{m-1}\right\}$ be as in 4.1 and define

$$
\begin{equation*}
\left(T_{n} f\right)(z)=f(z+n) \tag{10}
\end{equation*}
$$

for each $n \geqslant 1$ and $f \in B(X)$. Then $\left\{T_{n}\right\}$ is a sequence of unital linear contractions on $B(X)$. Let μ be the evaluation at the origin of X. Then $\mu\left(T_{n} \mathbf{1}\right)=1$ for all $n \geqslant 1$ and $\lim _{n \rightarrow \infty} \mu\left(T_{n} f_{i}\right)=\alpha_{i}$ for all $1 \leqslant i \leqslant k$. However, $\lim _{n \rightarrow \infty} \mu\left(T_{n} f\right)$ fails to exist for any function f in $B(X)$ such that $f(n)=(-1)^{n}$ for all natural numbers n.
4.3. An example of X and $E=\left\{x_{1}, \ldots, x_{m}\right\}$ such that all locally unital linear contractions on $B(X)$ are BKW for $\left\{1, f_{1}, \ldots, f_{k}\right\}$ and $\left\|\|_{E}\right.$ whenever $\left\{f_{1}, \ldots, f_{k}\right\}$ satisfies conditions (i) and (ii). Let $X=\left\{x_{1}, \ldots, x_{m+1}\right\}$, $E=\left\{x_{1}, \ldots, x_{m}\right\}, f_{0}=\mathbf{1}$ and let $\left\{f_{1}, \ldots, f_{k}\right\}$ be a finite collection of functions in $B(X)$ which satisfies the conditions (i) and (ii) in the first section. Then an arbitrary locally unital linear contraction T on $B(X)$ is BKW for $\left\{\mathbf{1}, f_{1}, \ldots, f_{m}\right\}$ and $\left\|\|_{E}\right.$. Actually let $\left\{T_{\lambda}\right\}$ be a net of contractions on $B(X)$ such that $\lim _{\lambda}\left\|T_{\lambda}\left(f_{i}\right)-T\left(f_{i}\right)\right\|_{E}=0$ for $i=0,1, \ldots, m$. Let $y \in E$ and $f \in B(X)$ be fixed arbitrarily. Then we have only to show that $\lim _{\lambda}\left(T_{\lambda} f\right)(y)=(T f)(y)$. As observed in the proof of Theorem 1, since $T(\mathbf{1})=1$ on E and $y \in E$, we can assume that $\left\{T_{\lambda}^{*}\left(\delta_{y}\right)\right\}$ converges in the weak * topology to a probability measure on βX, say η. Since

$$
\eta\left(f_{i}\right)=\lim _{\lambda}\left(T_{\lambda} f_{i}\right)(y)=\left(T f_{i}\right)(y)=\left(T^{*} \delta_{y}\right)\left(f_{i}\right) \quad(0 \leqslant i \leqslant k),
$$

it follows that η and $T^{*}\left(\delta_{y}\right)$ agree on the linear span of $\left\{f_{0}, f_{1}, \ldots, f_{k}\right\}$, hence $\eta(h)=\left(T^{*} \delta_{y}\right)(h)=(T h)(y)$ because η and $T^{*}\left(\delta_{y}\right)$ are positive. By the condition (ii), there are scalars $c_{0}, c_{1}, \ldots, c_{k}$ such that $f(x)=\sum_{i=0}^{k} c_{i} f_{i}(x)$ for every $x \in E$. Note that $h \mid E=0$ and $h\left(x_{m+1}\right) \geqslant 1$, hence by setting

$$
c=\frac{1}{h\left(x_{m+1}\right)}\left\{f\left(x_{m+1}\right)-\sum_{i=0}^{k} c_{i} f_{i}\left(x_{m+1}\right)\right\},
$$

we have $f=c h+\sum_{i=0}^{k} c_{i} f_{i}$. Therefore

$$
\begin{aligned}
\lim _{\lambda}\left(T_{\lambda} f\right)(y) & =\eta(f)=c \eta(h)+\sum_{i=0}^{k} c_{i} \eta\left(f_{i}\right) \\
& =c(T h)(y)+\sum_{i=0}^{k} c_{i}\left(T f_{i}\right)(y)=(T f)(y)
\end{aligned}
$$

as required.

4.4. An example of $X, E=\left\{x_{1}, \ldots, x_{m}\right\}$, and $\left\{f_{1}, \ldots, f_{k}\right\}$ for which the

 converses of Theorems 2 and 4 do not hold. Throughout the remaider of this section, let X be a set containing $m+2$-points; $x_{1}, \ldots, x_{m}, x_{m+1}, x_{m+2}$, $E=\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left\{f_{1}, \ldots, f_{m}\right\}$ a subset of $B(X)$ defined by$$
f_{1}(x)= \begin{cases}1, & \text { if } \quad x=x_{1} \\ 0, & \text { if } x=x_{\gamma} \quad(2 \leqslant \gamma \leqslant m) \\ 3, & \text { if } x=x_{m+1} \\ 2, & \text { otherwise }\end{cases}
$$

and

$$
f_{i}(x)=\left\{\begin{array}{lll}
1, & \text { if } & x=x_{i} \\
0, & \text { if } & x \neq x_{i}
\end{array} \quad(i=2, \ldots, m) .\right.
$$

Let h be a function in $B(X)$ defined by

$$
\begin{equation*}
h=\left(\sum_{i=1}^{m} f_{i}\right)-\mathbf{1}, \tag{11}
\end{equation*}
$$

so that

$$
\begin{equation*}
h \mid E=0, \quad h\left(x_{m+1}\right)=2 \quad \text { and } \quad h=1 \text { on } X \backslash\left(E \cup\left\{x_{m+1}\right\}\right) . \tag{12}
\end{equation*}
$$

Accordingly $\left\{f_{1}, \ldots, f_{m}\right\}$ satisfies the conditions (i) and (ii) in the first section. Moreover we note that

$$
\begin{equation*}
\inf _{x_{m+1} \neq x \in X} \max _{1 \leqslant i \leqslant m}\left|f_{i}(x)-f_{i}\left(x_{m+1}\right)\right|=1 . \tag{13}
\end{equation*}
$$

4.4.1. Consider the following unital linear contraction T on $B(X)$ defined by

$$
(T f)(x)= \begin{cases}f(x), & \text { if } \quad x \neq x_{1} \tag{14}\\ \frac{f\left(x_{1}\right)+f\left(x_{m+1}\right)}{2}, & \text { if } \quad x=x_{1}\end{cases}
$$

Then $\left(T^{*} \delta_{x_{1}}\right)(\beta X \backslash X)=0$ and $\left(T^{*} \delta_{x_{1}}\right)\left(\left\{x_{m+1}\right\}\right)=\frac{1}{2}$, hence T satisfies neither of the conditions (II) and (III). Moreover we see that T is not BKW for $\left\{\mathbf{1}, f_{1}, \ldots, f_{m}\right\}$ and $\left\|\|_{E}\right.$. In fact, set

$$
\left(T_{2 n} f\right)(x)= \begin{cases}f(x), & \text { if } \quad x \neq x_{1} \\ \frac{f\left(x_{1}\right)+f\left(x_{m+1}\right)+f\left(x_{m+2}\right)}{3}, & \text { if } \quad x=x_{1}\end{cases}
$$

and

$$
T_{2 n-1}(f)=T(f)
$$

for each $f \in B(X)$ and $n \geqslant 1$. Then $\left\{T_{n}\right\}$ is a sequence of unital linear contractions on $B(X)$ such that $\lim _{n \rightarrow \infty}\left(T_{n} f\right)(x)=(T f)(x)$ for all $f \in B(X)$ and $x \in X \backslash\left\{x_{1}\right\}$. Further by (14) we see that

$$
\lim _{n \rightarrow \infty}\left(T_{n} f_{i}\right)\left(x_{1}\right)=2 \delta_{i, 1}=\left(T f_{i}\right)\left(x_{1}\right) \quad(1 \leqslant i \leqslant m)
$$

where $\delta_{i, j}$ is Kronecker's delta function. But $\lim _{n \rightarrow \infty}\left(T_{n} f\right)\left(x_{1}\right)$ fails to exists for the following function f in $B(X)$ defined by

$$
f(x)=\left\{\begin{array}{lll}
1, & \text { if } & x=x_{1} \\
0, & \text { if } & x \neq x_{1}
\end{array}\right.
$$

4.4.2. Let $m \geqslant 2$ and define

$$
(T f)(x)= \begin{cases}f(x), & \text { if } x \neq x_{1} \tag{15}\\ \frac{f\left(x_{2}\right)+f\left(x_{m+1}\right)}{2}, & \text { if } x=x_{1}\end{cases}
$$

Then T is a unital linear contraction on $B(X)$ with $\operatorname{supp}\left(T^{*} \delta_{x_{1}}\right)=$ $\left\{x_{2}, x_{m+1}\right\}$, and hence T does not satisfy the condition (I). However T is BKW for $\left\{\mathbf{1}, f_{1}, \ldots, f_{m}\right\}$ and $\left\|\|_{E}\right.$. Actually let $\left\{T_{\lambda}\right\}$ be a net of contractions on $B(X)$ such that $\lim _{\lambda}\left\|T_{\lambda}\left(f_{i}\right)-T\left(f_{i}\right)\right\|_{E}=0$ for $i=0,1, \ldots, m$, where $f_{0}=1$. Then by Theorem 1, we have

$$
\lim _{\lambda}\left(T_{\lambda} f\right)\left(x_{\gamma}\right)=(T f)\left(x_{\gamma}\right)
$$

for all $f \in B(X)$ and $2 \leqslant \gamma \leqslant m$. It only remains to show that

$$
\lim _{\lambda}\left(T_{\lambda} f\right)\left(x_{1}\right)=(T f)\left(x_{1}\right)
$$

for all $f \in B(X)$. As in 4.3, we can assume that $\left\{T_{\lambda}{ }^{*}\left(\delta_{x_{1}}\right)\right\}$ converges in the weak* topology to a probability Radon measure on βX, say η. Then by (11), (12), and (15),

$$
\begin{align*}
\eta(h) & =\lim _{\lambda} \sum_{i=1}^{m}\left(T_{\lambda} f_{i}\right)\left(x_{1}\right)-\lim _{\lambda}\left(T_{\lambda} \mathbf{1}\right)\left(x_{1}\right) \\
& =\sum_{i=1}^{m}\left(T f_{i}\right)\left(x_{1}\right)-(T \mathbf{1})\left(x_{1}\right) \tag{16}\\
& =(T h)\left(x_{1}\right)=1 .
\end{align*}
$$

Also, $\eta\left(f_{2}\right)=\left(T f_{2}\right)\left(x_{1}\right)=\frac{1}{2}$ and $\eta\left(f_{i}\right)=\left(T f_{i}\right)\left(x_{1}\right)=0$ for each $3 \leqslant i \leqslant m$; hence $\eta\left(\left\{x_{2}\right\}\right)=\frac{1}{2}$ and $\eta\left(\left\{x_{3}, \ldots, x_{m}\right\}\right)=0$. Further by (12) and (16),

$$
\begin{equation*}
1=\int_{\beta X} h d \eta=2 \eta\left(\left\{x_{m+1}\right\}\right)+\eta\left(\beta X \backslash\left\{x_{1}, \ldots, x_{m}, x_{m+1}\right\}\right) . \tag{17}
\end{equation*}
$$

On the other hand, since $x_{2}, x_{m+1} \notin \beta X \backslash\left\{x_{1}, \ldots, x_{m}, x_{m+1}\right\}$ and $x_{2} \neq x_{m+1}$, we have

$$
\begin{equation*}
\eta\left(\left\{x_{m+1}\right\}\right)+\eta\left(\beta X \backslash\left\{x_{1}, \ldots, x_{m}, x_{m+1}\right\}\right) \leqslant 1-\eta\left(\left\{x_{2}\right\}\right)=\frac{1}{2} . \tag{18}
\end{equation*}
$$

Combining (17) and (18), we obtain $\eta\left(\left\{x_{m+1}\right\}\right)=1 / 2$ and so $\eta=$ $\left(\delta_{x_{2}}+\delta_{x_{m+1}}\right) / 2$. In other words, $\lim _{\lambda}\left(T_{\lambda} f\right)\left(x_{1}\right)=(T f)\left(x_{1}\right)$ for all $f \in B(X)$.

Acknowledgment

The authors thank the referee for simplifying the original proofs and for other helpful comments.

References

1. F. Altomare and M. Campiti, "Korovkin-type Approximation Theory and Its Applications," de Gruyter, Berlin/New York, 1994.
2. G. A. Anastassiou, A discrete Korovkin theorem, J. Approx. Theory 45 (1985), 383-388.
3. G. A. Anastassiou, On a discrete Korovkin theorem, J. Approx. Theory 61 (1990), 384-386.
4. E. Hewitt and K. A. Ross, "Abstract Harmonic Analysis, I," Springer-Verlag, Berlin/ Göttingen/Heidelberg, 1963.
5. T. Nishishiraho, Convergence of positive linear functionals, Ryukyu Math. J. 1 (1988), 73-94.
6. R. Sato, A counterexample to a discrete Korovkin theorem, J. Approx. Theory 64 (1991), 235-237.
7. S.-E. TAKahasi, Bohman-Korovkin-Wulbert operators on normed spaces, J. Approx. Theory 72 (1993), 174-184.
8. S.-E. TaKahasi, (T, E)-Korovkin closures in normed spaces and BKW-operators, J. Approx. Theory 82 (1995), 340-351.
